C++初阶:适合新手的手撕list(模拟实现list)

上次讲了常用的接口:今天就来进行模拟实现啦



1.基本结构与文件规划

请添加图片描述

  • list.h头文件:包含类的全部(函数的声明与定义)
  • reverseIterator.h文件:进行反向迭代器的实现
  • test.cpp源文件:进行调用test函数,测试和完善功能

基本结构:

#pragma once

namespace MyList
{
    // List的节点类
    template<class T>
    struct ListNode
    {
        ListNode<T>* _prev;
        ListNode<T>* _next;
        T _data;

        ListNode(const T& x=T())
            :_prev(nullptr),_next(nullptr),_data(x)
        {}
    };


    //List的迭代器类
    template<class T,class Ref,class Ptr>
    struct ListIterator
    {
        typedef ListNode<T> Node;
        typedef ListIterator<T,Ref,Ptr> Self;
        
        Node* _node;

        ListIterator(Node* node)//构造函数
            :_node(node)
        {}

        ListIterator(const Self& l)//拷贝构造函数
            :_node(l._node)
        {}

        T& operator*();
        T* operator->();
        Self& operator++();
        Self operator++(int);
        Self& operator--();
        Self& operator--(int);
        bool operator!=(const Self& l);
        bool operator==(const Self& l);

    };


    //list类
    template<class T>
    class list
    {
        typedef ListNode<T> Node;//默认是private 不给外面用
    public:
        typedef ListIterator<T,T&,T*> iterator;
        typedef ListIterator<T,const T&,const T&> const_iterator;
        //构造函数
        list();

        list(int n,const T& value = T());

        template <class Iterator>
        list(Iterator first,Iterator last);

        //析构
        ~list();


        // List Iterator
        iterator begin();
        iterator end();
        const_iterator begin();
        const_iterator end();


        // List Capacity
        size_t size()const;
        bool empty()const;


   
        // List Access
        T& front();
        const T& front()const;
        T& back();
        const T& back()const;


        // List Modify
        void push_back(const T& val) { insert(end(),val); }
        void pop_back() { erase(--end()); }
        void push_front(const T& val) { insert(begin(),val); }
        void pop_front() { erase(begin()); }
        // 在pos位置前插入值为val的节点
        iterator insert(iterator pos,const T& val);
        // 删除pos位置的节点,返回该节点的下一个位置
        iterator erase(iterator pos);
        void clear();
        void swap(list<T>& l);

    private:
        Node* _head;
    };
};
  1. ListNode 结构体:
    • 定义了链表的节点结构,包含了三个成员变量:前驱指针 _prev、后继指针 _next 和数据 _data
    • 构造函数初始化了这些成员变量,允许在创建节点时指定初始值。
  2. ListIterator 结构体:
    • 定义了链表的迭代器结构,包含了指向节点的指针 _node
    • 重载了一系列操作符,如 *->++--!===,以便于对链表进行遍历和操作。
  3. list 类:
    • 包含了迭代器的定义、构造函数、析构函数以及一系列的操作函数。
    • 定义了两种迭代器类型:iteratorconst_iterator,分别用于可修改的迭代和只读的迭代。
    • 实现了一系列的操作函数

2.空参构造函数(constructor)

        list()
        {
            _head = new Node;//去调用Node的默认构造函数了
            _head->_next = _head;
            _head->_prev = _head;//带头双向循环链表是这样的
        }

使用new:动态开辟+调用默认构造函数了


3.完善迭代器(iterator)(begin(),end())

这里为什么我们要把迭代器封装为一个类呢?明明之前模拟vectorstring时,就直接typedef

之前模拟vectorstring时,二者底层都是连续的,想要到下一个可以直接++;想要得到里面的数据可以直接*

但是现在对于list是不行的,我们就需要重载各种运算符,但是底层又是一个指针(内置类型)不能重载,现在就只能封装进一个类里,就能重载

 //List的迭代器类
    template<class T,Ptr> Self;
        
        Node* _node;

        ListIterator(Node* node)//构造函数
            :_node(node)
        {}

        ListIterator(const Self& l)//拷贝构造函数
            :_node(l._node)//这里是浅拷贝(写不写都行)
            //新创建的迭代器和原迭代器指向相同的内存地址
        {}

        Ref operator*()
        {
            return _node->_data;
        }
        Ptr operator->()
        {
            return &(_node->_data);
        }

        Self& operator++()//前置
        {
            _node = _node->_next;//自己要更新
            return *this;
        }
        Self operator++(int)
        {
            Self s(*this);
            _node = _node->_next;
            return s;
        }

        Self& operator--()
        {
            _node = _node->_prev;//自己要更新
            return *this;
        }
        Self& operator--(int)
        {
            Self s(*this);
            _node = _node->_prev;
            return s;
        }

        bool operator!=(const Self& l)
        {
            return _node != l._node;
        }
        bool operator==(const Self& l)
        {
            return _node == l._node;
        }

    };


    //list类
    template<class T>
    class list
    {
        typedef ListNode<T> Node;//默认是private 不给外面用
    public:
        typedef ListIterator<T,const T&> const_iterator;
        //构造函数
        list()
        {
            _head = new Node;//去调用Node的默认构造函数了
            _head->_next = _head;
            _head->_prev = _head;//带头双向循环链表是这样的
        }

        // List Iterator
        iterator begin()
        {
            return _head->_next;//隐式类型转换(由单参构造函数支撑)
        }
        iterator end()
        {
            return _head;
        }
        const_iterator begin()
        {
            return _head->_next;
        }
        const_iterator end()
        {
            return _head;
        }

    private:
        Node* _head;
    };
};

4.List Capacity(size(),empty())

       // List Capacity
        size_t size()const
        {
            size_t size = 0;
            iterator it = begin();
            while (it != end())
            {
                size++;
                ++it;
            }
            return size;
        }
        bool empty()const
        {
            return size() == 0;
        }

4.增删改查(push_back,erase)

        // List Modify
        void push_back(const T& val) //尾插
        { 
            insert(end(),val); 
        }
        void pop_back() //尾删
        { 
            erase(--end());
        }
        void push_front(const T& val) //头插
        { 
            insert(begin(),val);
        }
        void pop_front()//头删
        { 
            erase(begin());
        }
        // 在pos位置前插入值为val的节点
        iterator insert(iterator pos,const T& val)
        {
            Node* cur = pos._node;
            Node* prev = pos._node->_prev;
            Node* newnode = new Node(val);//创建新节点

            newnode->_next = cur;
            cur->_prev = newnode;
            newnode->_prev = prev;
            prev->_next = cur;

            return newnode;//隐式类型转换
        }
        // 删除pos位置的节点,返回该节点的下一个位置
        iterator erase(iterator pos)
        {
            assert(pos != _head);

            Node* cur = pos._node;
            Node* prev = cur->_prev;
            Node* next = cur->_next;

            prev->_next = next;
            next->_prev = prev;

            delete cur;
            return next;
        }

使用test1函数看功能是否正常

	void print(MyList::list<int>& lt)
	{
		list<int>::iterator it = lt.begin();
		while (it != lt.end())
		{
			cout << *it << " ";
			++it; // 更新迭代器
		}
		cout << endl;
	}

	void test1()
	{
		MyList::list<int> lt;
		lt.push_back(1);
		lt.push_back(2);//尾插2个
		print(lt);

		lt.pop_back();//尾删一个
		print(lt);

		lt.push_front(0);//头插一个
		print(lt);

		lt.pop_front();//头删一个
		print(lt);
	}

请添加图片描述


6.clear()和swap()

       void clear()
        {
            //删除除头结点(_head)以外的节点
            iterator it = begin();
            while (it != end())
            {
                it = erase(it);
            }
        }

        void swap(list<T>& l)
        {
            std::swap(_head,l._head);
        }

7. 完善构造函数

7.1list (size_type n,const value_type& val = value_type());

list(int n,const T& value = T())
{
    _head = new Node;
    _head->_next = _head;
    _head->_prev = _head;

    for (int i = 0; i < n; ++i)
    {
        push_back(value);
    }
}

请添加图片描述

7.2利用迭代器进行构造

	    template <class Iterator>
        list(Iterator first,Iterator last)
        {
            while (first != last)
            {
                push_back(*first);
                first++;
            }
        }

为什么使用模版:

因为可能使用其他类型的迭代器来进行初始化

7.3拷贝构造

        list(const list<T>& lt)
        {
            _head = new Node;
            _head->_next = _head;
            _head->_prev = _head;

            iterator it = copy.begin();
            while (it != copy.end())
            {
                push_back(*it);
                it++;
            }
        }

8.重载=

        list<T>& lt operator=(list<T> lt)
        {
            swap(lt);
            return *this;
        }

注意这里的参数不是常量引用,而是按值传递的。这是因为在赋值操作符中我们会调用 swap 函数,按值传递可以保证传入的参数会被复制一份,避免对原对象的修改。在函数体内,我们调用了 swap 函数,将当前对象和传入的对象进行内容交换,然后返回 *this,即当前对象的引用。


9.析构函数

        ~list()
        {
            clear();
            delete _head;
            _head = nullptr;
        }

调用clear函数后,就只剩下头结点了


10.反向迭代器

我们再次使用封装的思想,封装一个反向迭代器进去

#pragma once

template <class iterator,class Pre>
struct reserve_iterator
{
	typedef reserve_iterator<iterator,Pre> self;

	iterator _it;

	reserve_iterator(iterator it)
		:_it(it)  
	{}

	self& operator++()
	{
		--_it;
		return *this;
	}
	self operator++(int)
	{
		self tmp = *this;
		--_it;
		return tmp;
	}

	self& operator--()
	{
		++_it;
		return *this;
	}
	self operator--(int)
	{
		self tmp = *this;
		++_it;
		return tmp;
	}

	Ref operator*()
	{
		iterator tmp = _it;
		--tmp;
		return *tmp;
	}

	Pre operator->()
	{
		return &(operator*());
	}

	bool operator!=(const self& s)
	{
		return _it != s._it;
	}
	bool operator==(const self& s)
	{
		return _it == s._it;
	}

};

此时那list类里就是这样:

请添加图片描述


好啦,list的内容也结束啦,下次就是Stack和Queue了。感谢大家支持!!!

相关文章

文章浏览阅读2.2k次,点赞6次,收藏20次。在我们平时办公工作...
文章浏览阅读1k次。解决 Windows make command not found 和...
文章浏览阅读3.2k次,点赞2次,收藏6次。2、鼠标依次点击“计...
文章浏览阅读1.3w次。蓝光版属于高清版的一种。BD英文全名是...
文章浏览阅读974次,点赞7次,收藏8次。提供了更强大的功能,...
文章浏览阅读1.4w次,点赞5次,收藏22次。如果使用iterator的...