Python中那些 Pythonic的写法详解

这篇文章主要介绍了Python中那些 Pythonic的写法详解,一份优雅、干净、整洁的代码通常自带文档和注释属性,读代码即是读作者的思路,需要的朋友可以参考下

前言

Martin(Bob大叔)曾在《代码整洁之道》一书打趣地说:当你的代码在做 Code Review 时,审查者要是愤怒地吼道:

“What the fuck is this shit?”

“Dude, What the fuck!”

等言辞激烈的词语时,那说明你写的代码是 Bad Code,如果审查者只是漫不经心的吐出几个

“What the fuck?”,

那说明你写的是 Good Code。衡量代码质量的唯一标准就是每分钟骂出“WTF” 的频率。

一份优雅、干净、整洁的代码通常自带文档和注释属性,读代码即是读作者的思路。Python 开发中很少要像 Java 一样把遵循某种设计模式作为开发原则来应用到系统中,毕竟设计模式只是一种实现手段而已,代码清晰才是最终目的,而 Python 灵活而不失优雅,这也是为什么 Python 能够深受 geek 喜爱的原因之一。

上次写了一篇:如何更优雅地写python代码,今天就接着这个话题写点 Python 中那些 Pythonic 的写法,希望可以抛砖引玉。

1、链式比较操作

age = 18 if age > 18 and age

pythonic

if 18

理解了链式比较操作,那么你应该知道为什么下面这行代码输出的结果是 False。

>>> False == False == True False

2、if/else 三目运算

if gender == 'male': text = '男' else: text = '女'

pythonic

text = '男' if gender == 'male' else '女'

在类C的语言中都支持三目运算 b?x:y,Python之禅有这样一句话:

“There should be one-- and preferably only one --obvIoUs way to do it. ”。

能够用 if/else 清晰表达逻辑时,就没必要再额外新增一种方式来实现。

3、真值判断

检查某个对象是否为真值时,还显示地与 True 和 False 做比较就显得多此一举,不专业

if attr == True: do_something() if len(values) != 0: # 判断列表是否为空 do_something()

pythonic

if attr: do_something() if values: do_something()

真假值对照表:

类型 False True

布尔 False (与0等价) True (与1等价)

字符串 ""( 空字符串) 非空字符串,例如 " ", "blog"

数值 0, 0.0 非0的数值,例如:1, 0.1, -1, 2

容器 [], (), 至少有一个元素的容器对象,例如:[0], (None,), ['']

None None 非None对象

4、for/else语句

for else 是 Python 中特有的语法格式,else 中的代码在 for 循环遍历完所有元素之后执行

flagfound = False for i in mylist: if i == theflag: flagfound = True break process(i) if not flagfound: raise ValueError("List argument missing terminal flag.")

pythonic

for i in mylist: if i == theflag: break process(i) else: raise ValueError("List argument missing terminal flag.")

5、字符串格式化

s1 = "foofish.net" s2 = "vttalk" s3 = "welcome to %s and following %s" % (s1, s2)

pythonic

s3 = "welcome to {blog} and following {wechat}".format(blog="foofish.net", wechat="vttalk")

很难说用 format 比用 %s代码量少,但是 format 更易于理解。

“Explicit is better than implicit --- Zen of Python”

6、列表切片

获取列表中的部分元素最先想到的就是用 for 循环根据条件提取元素,这也是其它语言中惯用的手段,而在 Python 中还有强大的切片功能

items = range(10) # 奇数 odd_items = [] for i in items: if i % 2 != 0: odd_items.append(i) # 拷贝 copy_items = [] for i in items: copy_items.append(i)

pythonic

# 第1到第4个元素的范围区间 sub_items = items[1:4] # 奇数 odd_items = items[1::2] #拷贝 copy_items = items[::] 或者 items[:]

列表元素的下标不仅可以用正数表示,还是用负数表示,最后一个元素的位置是 -1,从右往左,依次递减。

-------------------------- | P | y | t | h | o | n | -------------------------- 0 1 2 3 4 5 -6 -5 -4 -3 -2 -1 --------------------------

7、善用生成

def fib(n): a, b = 0, 1 result = [] while b

pythonic

def fib(n): a, b = 0, 1 while a

上面是用生成生成费波那契数列。生成器的好处就是无需一次性把所有元素加载到内存,只有迭代获取元素时才返回该元素,而列表是预先一次性把全部元素加载到了内存。此外用 yield 代码看起来更清晰。

8、获取字典元素

d = {'name': 'foo'} if d.has_key('name'): print(d['name']) else: print('unkonw')

pythonic

d.get("name", "unkNow")

9、预设字典认值

通过 key 分组的时候,不得不每次检查 key 是否已经存在于字典中。

data = [('foo', 10), ('bar', 20), ('foo', 39), ('bar', 49)] groups = {} for (key, value) in data: if key in groups: groups[key].append(value) else: groups[key] = [value]

pythonic

#第一种方式 groups = {} for (key, value) in data: groups.setdefault(key, []).append(value) # 第二种方式 from collections import defaultdict groups = defaultdict(list) for (key, value) in data: groups[key].append(value)

10、字典推导式

在python2.7之前,构建字典对象一般使用下面这种方式,可读性非常差numbers = [1,2,3] my_dict = dict([(number,number*2) for number in numbers]) print(my_dict) # {1: 2, 2: 4, 3: 6}pythonicnumbers = [1, 2, 3] my_dict = {number: number * 2 for number in numbers} print(my_dict) # {1: 2, 2: 4, 3: 6} # 还可以指定过滤条件 my_dict = {number: number * 2 for number in numbers if number > 1} print(my_dict) # {2: 4, 3: 6}字典推导式是python2.7新增的特性,可读性增强了很多,类似的还是列表推导式和集合推导式。

相关文章

功能概要:(目前已实现功能)公共展示部分:1.网站首页展示...
大体上把Python中的数据类型分为如下几类: Number(数字) ...
开发之前第一步,就是构造整个的项目结构。这就好比作一幅画...
源码编译方式安装Apache首先下载Apache源码压缩包,地址为ht...
前面说完了此项目的创建及数据模型设计的过程。如果未看过,...
python中常用的写爬虫的库有urllib2、requests,对于大多数比...