Python中numpy模块常见用法demo实例小结

这篇文章主要介绍了Python中numpy模块常见用法,结合实例形式总结分析了numpy常见的运算操作技巧与注意事项,需要的朋友可以参考下

本文实例总结了Python中numpy模块常见用法分享给大家供大家参考,具体如下:

import numpy as np

arr = np.array([[1,2,3], [2,3,4]]) print(arr) print(type(arr)) print('number of dim:', arr.ndim) print('shape:', arr.shape) print('size:', arr.size)

[[1 2 3]

 [2 3 4]]

number of dim: 2

shape: (2, 3)

size: 6

a32 = np.array([1,23,456], dtype=np.int) print(a32.dtype) a64 = np.array([1,23,456], dtype=np.int64) print(a64.dtype) f64 = np.array([1,23,456], dtype=np.float) print(f64.dtype)

int32

int64

float64

z = np.zeros((3, 4)) print(z) print(z.dtype) print() one = np.ones((3, 4), dtype=int) print(one) print(one.dtype) print() emt = np.empty((3, 4), dtype=int) print(emt) print(emt.dtype) print() ran = np.arange(12).reshape((3,4)) print(ran) print(ran.dtype) print() li = np.linspace(1, 10, 6).reshape(2, 3) print(li) print(li.dtype)

[[0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]]

float64

[[1 1 1 1]

 [1 1 1 1]

 [1 1 1 1]]

int32

[[          0  1072693248  1717986918  1074161254]

 [ 1717986918  1074947686 -1717986918  1075419545]

 [ 1717986918  1075865190           0  1076101120]]

int32

[[ 0  1  2  3]

 [ 4  5  6  7]

 [ 8  9 10 11]]

int32

[[ 1.   2.8  4.6]

 [ 6.4  8.2 10. ]]

float64

a = np.array([10,20,30,40]) b = np.arange(4) print(a) print(b) print() print(a+b) print(a-b) print(a*b) print() print(a**b) print() print(10*np.sin(a)) print() print(b

[10 20 30 40]

[0 1 2 3]

[10 21 32 43]

[10 19 28 37]

[  0  20  60 120]

[    1    20   900 64000]

[-5.44021111  9.12945251 -9.88031624  7.4511316 ]

[ True  True  True False]

a = np.array([[1,2], [3,4]]) b = np.arange(4).reshape(2, 2) print(a) print(b) print() print(a * b) print(np.dot(a, b)) #矩阵乘法,或下面: print(a.dot(b)) print()

[[1 2]

 [3 4]]

[[0 1]

 [2 3]]

[[ 0  2]

 [ 6 12]]

[[ 4  7]

 [ 8 15]]

[[ 4  7]

 [ 8 15]]

a = np.random.random((2, 4)) print(a) print(np.sum(a)) print(np.min(a)) print(np.max(a)) print() print(np.sum(a, axis=1)) #返回每一行的和。 axis=1代表行 print(np.min(a, axis=0)) #返回每一列的最小值。 axis=0代表列 print(np.mean(a, axis=1)) #返回每一行的平均值

[[0.04456704 0.99481679 0.96599561 0.48590905]

 [0.56512852 0.62887714 0.78829115 0.32759434]]

4.8011796551183945

0.04456704487406293

0.9948167913629338

[2.4912885  2.30989116]

[0.04456704 0.62887714 0.78829115 0.32759434]

[0.62282212 0.57747279]

A = np.arange(2, 14).reshape(3, 4) print(A) print(np.argmin(A)) #最小索引 print(np.argmax(A)) #最大索引 print() print(A.mean()) print(np.median(A)) #中位数 print(A.cumsum()) #累加值 print(np.diff(A)) #相邻差值 print()

[[ 2  3  4  5]

 [ 6  7  8  9]

 [10 11 12 13]]

11

7.5

7.5

[ 2  5  9 14 20 27 35 44 54 65 77 90]

[[1 1 1]

 [1 1 1]

 [1 1 1]]

(array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int32), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int32))

A = np.array([[1,0], [0,3]]) print(A) print(A.nonzero()) #分别输出非零元素的行和列值 print(np.sort(A)) #逐行排序后的矩阵 print(np.sort(A, axis=0)) #逐列排序的矩阵 print(np.sort(A).nonzero()) print() B = np.arange(14, 2, -1).reshape(3, 4) print(B) print(B.transpose()) #转置 print((B.T).dot(B)) #转置 print() print(np.clip(B, 5, 9)) #B中将范围限定,大于9的数都为9,小于5的都为5,之间的数不变 print()

[[1 0]

 [0 3]]

(array([0, 1], dtype=int32), array([0, 1], dtype=int32))

[[0 1]

 [0 3]]

[[0 0]

 [1 3]]

(array([0, 1], dtype=int32), array([1, 1], dtype=int32))

[[14 13 12 11]

 [10  9  8  7]

 [ 6  5  4  3]]

[[14 10  6]

 [13  9  5]

 [12  8  4]

 [11  7  3]]

[[332 302 272 242]

 [302 275 248 221]

 [272 248 224 200]

 [242 221 200 179]]

[[9 9 9 9]

 [9 9 8 7]

 [6 5 5 5]]

A = np.arange(3, 7) print(A) print(A[2]) print() B = np.arange(3, 15).reshape(3, 4) print(B) print(B[2]) print(B[2][1]) print(B[2, 1]) print() print(B[2, 2:]) print(B[1:, 2:]) print() for row in B: print(row) print() for col in B.T: print(col) print() print(B.flatten()) for elm in B.flat: print(elm)

[3 4 5 6]

5

[[ 3  4  5  6]

 [ 7  8  9 10]

 [11 12 13 14]]

[11 12 13 14]

12

12

[13 14]

[[ 9 10]

 [13 14]]

[3 4 5 6]

[ 7  8  9 10]

[11 12 13 14]

[ 3  7 11]

[ 4  8 12]

[ 5  9 13]

[ 6 10 14]

[ 3  4  5  6  7  8  9 10 11 12 13 14]

3

4

5

6

7

8

9

10

11

12

13

14

#矩阵合并 A = np.array([1,1,1]) B = np.array([2,2,2]) C = np.vstack((A, B, A, B)) print(C) print(A.shape, (A.T).shape) print(C.shape) print() D = np.hstack((A, B)) print(D) print() print(A[np.newaxis, :]) print(A[:, np.newaxis]) print(np.hstack((A[:, np.newaxis], B[:, np.newaxis]))) print() print(np.stack((A,B), axis=0)) print(np.stack((A,B), axis=1)) #print(np.concatenate((A,B,B,A), axis=0)) #print(np.concatenate((A,B,B,A), axis=1))

[[1 1 1]

 [2 2 2]

 [1 1 1]

 [2 2 2]]

(3,) (3,)

(4, 3)

[1 1 1 2 2 2]

[[1 1 1]]

[[1]

 [1]

 [1]]

[[1 2]

 [1 2]

 [1 2]]

[[1 1 1]

 [2 2 2]]

[[1 2]

 [1 2]

 [1 2]]

A = np.arange(12).reshape(3, 4) print(A) print(np.split(A, 2, axis=1)) print(np.split(A, 3, axis=0)) print() print(np.array_split(A, 3, axis=1)) #不等分割 print() print(np.hsplit(A, 2)) print(np.vsplit(A, 1))

[[ 0  1  2  3]

 [ 4  5  6  7]

 [ 8  9 10 11]]

[array([[0, 1],

       [4, 5],

       [8, 9]]), array([[ 2,  3],

       [ 6,  7],

       [10, 11]])]

[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]

[array([[0, 1],

       [4, 5],

       [8, 9]]), array([[ 2],

       [ 6],

       [10]]), array([[ 3],

       [ 7],

       [11]])]

[array([[0, 1],

       [4, 5],

       [8, 9]]), array([[ 2,  3],

       [ 6,  7],

       [10, 11]])]

[array([[ 0,  1,  2,  3],

       [ 4,  5,  6,  7],

       [ 8,  9, 10, 11]])]

A = np.arange(4) B = A C = B D = A.copy() print(A, B, C, D) A[0] = 5 print(A, B, C, D) print(id(A), id(B), id(C), id(D)) #id返回指针的值(内存地址) print()

[0 1 2 3] [0 1 2 3] [0 1 2 3] [0 1 2 3]

[5 1 2 3] [5 1 2 3] [5 1 2 3] [0 1 2 3]

172730832 172730832 172730832 172730792

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

相关文章

功能概要:(目前已实现功能)公共展示部分:1.网站首页展示...
大体上把Python中的数据类型分为如下几类: Number(数字) ...
开发之前第一步,就是构造整个的项目结构。这就好比作一幅画...
源码编译方式安装Apache首先下载Apache源码压缩包,地址为ht...
前面说完了此项目的创建及数据模型设计的过程。如果未看过,...
python中常用的写爬虫的库有urllib2、requests,对于大多数比...