如何使用python将带有K-Means的真实标签的标签集群匹配

我使用Kmeans算法处理标签数据时遇到问题。我的测试句子获得了True Cluster,但是我没有得到True标签。我已经使用numpy来将集群与true_label_test进行匹配,但是此kmeans可以移动集群,真实标签与集群的数量不匹配。我需要这个问题的帮助。这是我的代码

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cluster import KMeans
from nltk.corpus import stopwords 
from nltk.stem.wordnet import WordNetLemmatizer
import string
import re
import numpy as np
from collections import Counter

stop = set(stopwords.words('indonesian'))
exclude = set(string.punctuation) 
lemma = WordNetLemmatizer()

# Cleaning the text sentences so that punctuation marks,stop words & digits are removed  
def clean(doc):
    stop_free = " ".join([i for i in doc.lower().split() if i not in stop])
    punc_free = ''.join(ch for ch in stop_free if ch not in exclude)
    normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split())
    processed = re.sub(r"\d+","",normalized)
    y = processed.split()
    #print (y)
    return y

path = "coba.txt"

train_clean_sentences = []
fp = open(path,'r')
for line in fp:
    line = line.strip()
    cleaned = clean(line)
    cleaned = ' '.join(cleaned)
    train_clean_sentences.append(cleaned)

#print(train_clean_sentences)
       
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(train_clean_sentences)

# Clustering the training 30 sentences with K-means technique
modelkmeans = KMeans(n_clusters=3,init='k-means++',max_iter=200,n_init=100)
modelkmeans.fit(X)

teks_satu = "Aplikasi Machine Learning untuk mengenali daun mangga dengan metode CNN"

test_clean_sentence = []

cleaned_test = clean(teks_satu)
cleaned = ' '.join(cleaned_test)
cleaned = re.sub(r"\d+",cleaned)
test_clean_sentence.append(cleaned)
    
Test = vectorizer.transform(test_clean_sentence) 

true_test_labels = ['AI','VR','Sistem Informasi']

predicted_labels_kmeans = modelkmeans.predict(Test)
print(predicted_labels_kmeans)

print ("\n-------------------------------PREDICTIONS BY K-Means--------------------------------------")
print ("\nIndex of Virtual Reality : ",Counter(modelkmeans.labels_[5:10]).most_common(1)[0][0])
print ("Index of Machine Learning : ",Counter(modelkmeans.labels_[0:5]).most_common(1)[0][0]) 
print ("Index of Sistem Informasi : ",Counter(modelkmeans.labels_[10:15]).most_common(1)[0][0])
print ("\n",teks_satu,":",true_test_labels[np.int(predicted_labels_kmeans)],predicted_labels_kmeans)

相关文章

功能概要:(目前已实现功能)公共展示部分:1.网站首页展示...
大体上把Python中的数据类型分为如下几类: Number(数字) ...
开发之前第一步,就是构造整个的项目结构。这就好比作一幅画...
源码编译方式安装Apache首先下载Apache源码压缩包,地址为ht...
前面说完了此项目的创建及数据模型设计的过程。如果未看过,...
python中常用的写爬虫的库有urllib2、requests,对于大多数比...