问题描述
我试图帮助 R 上的一位朋友进行分析。这样做,我们陷入了 lrm:逻辑回归模型:
ologit <- lrm(Y ~ X,data = myData)
Unable to fit model using “lrm.fit”
这么说,我不是 R 方面的专家,并试图尽可能地帮助我的朋友。但是由于我的想法不多了,我希望有人能告诉我为什么 lrm 没有在此代码上运行。
示例数据的屏幕截图:
感谢您提供的任何帮助! :)
完整代码和参考:
# (1) INSTALL AND LOAD PACKAGES------------------------------------------------
#install.packages ("rms")
#install.packages ("tidyr")
#install.packages ("readr")
#install.packages ("dplyr")
#install.packages ("ggplot2")
#install.packages ("plm")
#install.packages ("MASS")
#install.packages ("plm")
#install.packages ("stargazer")
install.packages("rms")
install.packages("tidyr")
install.packages("readr")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("plm")
install.packages("MASS")
install.packages("plm")
install.packages("stargazer")
library(rms)
library(tidyr)
library(readr)
library(dplyr)
library(ggplot2)
library(plm)
library(MASS)
library(plm)
library(stargazer)
# (2) IMPORT DATA SET-----------------------------------------------------------
library(readxl)
PanelDatanoFormatCat <- read_excel("inputFolder/PanelDatanoFormatCat.xlsx",sheet = "panel data",na = "na")
myData <- PanelDatanoFormatCat
attach(myData)
View(myData)
# (3) DATA DESCRIPTION----------------------------------------------------------
# DEPENDENT VARIABLE = Y = Gini Coefficient / Gini Category
# there are five categories:
# Category 1: 0-19
# Category 2: 20-39
# Category 3: 40-59
# Category 4: 60-79
# Category 5: 80-100
# DEPENDENT VARIABLE Z = Poverty Headcount Ratio
# there are five categories:
# Category 1: 0-19
# Category 2: 20-39
# Category 3: 40-59
# Category 4: 60-79
# Category 5: 80-100
#INDEPENDET VARIABLE = X
#List of independent variable
# NominalGDP
# GDPGrowth_annual_in_percent
# GDPperCapita
# UnemploymentTotal
# LaborForcetotal
# Inflation_annual_in_percent
# GDPDeflator
# CurrentAccountBalance
# FDI_NetInflows
# FDI_Netoutflows
# ImportsGoodsServices_percent_GDP
# ExportsGoodsServices_percent_GDP
# StocksTraded_percent_GDP
# GovernmentExpenditure_Education_Total
# GovernmentExpenditurePerStudent_primary
# GovernmentExpenditurePerStudent_secondary
# GovernmenrtExpenditurePerStudent_tertiary
# UrbanPopulation
# IncomeShare_held_by_lowest_20percent
# IncomeShare_held_by_highest_20percent
# NetoADreceived
# NetofficialDevelopmentAssistance_OfficialAidReceived
# NetoDAReceivedPerCapita
# (4) ASSIGN X,Y AND Z VARIABLES-----------------------------------------------
Y <- cbind(GiniCategory)
Z <- cbind(PovertyCategory)
X <- cbind(NominalGDP,GDPGrowth_annual__in_percent,GDPperCapita,UnemploymentTotal,LaborForcetotal,Inflation_annual_in_percent,GDPDeflator,CurrentAccountBalance,FDI_NetInflows,FDI_Netoutflows,ImportsGoodsServices_percent_GDP,ExportsGoodsServices_percent_GDP,StocksTraded_percent_GDP,GovernmentExpenditureEducationTotal,GovernmentExpenditurePerStudent_primary,GovernmentExpenditurePerStudent_secondary,GovernmentExpenditruePerStudent_tertiary,UrbanPopulation,IncomeShare_held_by_lowest_20percent,IncomeShare_held_by_highest_20percent,Net_ODA_received,NetofficialDevelopmentAssistance_OfficialAidReceived,NetoDAReceivedPerCapita)
Xvar <- c("NominalGDP","GDPGrowth_annual_percent","GDPperCapita","UnemploymentTotal","LaborForcetotal","Inflation_annual_in_percent","GDPDeflator","CurrentAccountBalance","FDI_NetInflows","FDI_Netoutflows","ImportsGoodsServices_percent_GDP","ExportsGoodsServices_percent_GDP","StocksTraded_percent_GDP","GovernmentExpenditureEducationTotal","GovernmentExpenditurePerStudent_primary","GovernmentExpenditurePerStudent_secondary","GovernmentExpenditurePerStudent_tertiary","UrbanPopulation","IncomeShare_held_by_lowest_20percent","IncomeShare_held_by_highest_20percent","Net_ODA_received","NetofficialDevelopmentAssistance_OfficialAidReceived","NetoDAReceivedPerCapita")
# (5) DESCRIPTIVE STATISTICS----------------------------------------------------
summary(Y)
summary(X)
summary(Z)
# (6) REGRESSION----------------------------------------------------------------
# Using GiniCategory as a dependent variable
Regression <- lm(GiniCategory ~ NominalGDP + GDPGrowth_annual__in_percent +
GDPDeflator + CurrentAccountBalance + FDI_NetInflows +
FDI_Netoutflows + ImportsGoodsServices_percent_GDP +
ExportsGoodsServices_percent_GDP + StocksTraded_percent_GDP +
GovernmentExpenditureEducationTotal +
GovernmentExpenditurePerStudent_primary +
GovernmentExpenditurePerStudent_secondary +
GovernmentExpenditruePerStudent_tertiary +
UrbanPopulation + IncomeShare_held_by_lowest_20percent +
IncomeShare_held_by_highest_20percent + Net_ODA_received +
NetofficialDevelopmentAssistance_OfficialAidReceived +
NetoDAReceived,data = myData)
summary(Regression)
lm(formula = GiniCategory ~ NominalGDP + GDPGrowth_annual__in_percent +
GDPDeflator + CurrentAccountBalance + FDI_NetInflows +
FDI_Netoutflows + ImportsGoodsServices_percent_GDP +
ExportsGoodsServices_percent_GDP + StocksTraded_percent_GDP +
GovernmentExpenditureEducationTotal +
GovernmentExpenditurePerStudent_primary +
GovernmentExpenditurePerStudent_secondary +
GovernmentExpenditruePerStudent_tertiary +
UrbanPopulation + IncomeShare_held_by_lowest_20percent +
IncomeShare_held_by_highest_20percent + Net_ODA_received +
NetofficialDevelopmentAssistance_OfficialAidReceived +
NetoDAReceived,data = myData)
# (6.1) REGRESSION--------------------------------------------------------------
# using poverty headcount ratio as a dependent variable
Regression1 <- lm(PovertyCategory ~ NominalGDP + GDPGrowth_annual__in_percent +
GDPDeflator + CurrentAccountBalance + FDI_NetInflows +
FDI_Netoutflows + ImportsGoodsServices_percent_GDP +
ExportsGoodsServices_percent_GDP + StocksTraded_percent_GDP +
GovernmentExpenditureEducationTotal +
GovernmentExpenditurePerStudent_primary +
GovernmentExpenditurePerStudent_secondary +
GovernmentExpenditruePerStudent_tertiary +
UrbanPopulation + IncomeShare_held_by_lowest_20percent +
IncomeShare_held_by_highest_20percent + Net_ODA_received +
NetofficialDevelopmentAssistance_OfficialAidReceived +
NetoDAReceived,data = myData)
summary(Regression1)
lm(formula = PovertyCategory ~ NominalGDP + GDPGrowth_annual__in_percent +
GDPDeflator + CurrentAccountBalance + FDI_NetInflows +
FDI_Netoutflows + ImportsGoodsServices_percent_GDP +
ExportsGoodsServices_percent_GDP + StocksTraded_percent_GDP +
GovernmentExpenditureEducationTotal +
GovernmentExpenditurePerStudent_primary +
GovernmentExpenditurePerStudent_secondary +
GovernmentExpenditruePerStudent_tertiary +
UrbanPopulation + IncomeShare_held_by_lowest_20percent +
IncomeShare_held_by_highest_20percent + Net_ODA_received +
NetofficialDevelopmentAssistance_OfficialAidReceived +
NetoDAReceived,data = myData)
# (7) ORDERED LOGIT MODEL COEFFICIENTS------------------------------------------
ddist <- datadist(Xvar)
options(datadist = 'ddist')
ologit <- lrm(Y ~ X,data = myData)
print(ologit)
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)