python – 使用keras计算梯度范数wrt权重

我试图用keras(作为诊断工具)计算相对于神经网络的权重的梯度范数.最后,我想为此创建一个回调,但在那里,我一直在努力创建一个可以计算渐变的函数,并以numpy数组/标量值的形式返回实际值(而不仅仅是张量流张量).代码如下:

import numpy as np
import keras.backend as K
from keras.layers import Dense
from keras.models import Sequential


def get_gradient_norm_func(model):
    grads = K.gradients(model.total_loss, model.trainable_weights)
    summed_squares = [K.sum(K.square(g)) for g in grads]
    norm = K.sqrt(sum(summed_squares))
    func = K.function([model.input], [norm])
    return func


def main():
    x = np.random.random((128,)).reshape((-1, 1))
    y = 2 * x
    model = Sequential(layers=[Dense(2, input_shape=(1,)),
                               Dense(1)])
    model.compile(loss='mse', optimizer='RMSprop')
    get_gradient = get_gradient_norm_func(model)
    history = model.fit(x, y, epochs=1)
    print(get_gradient([x]))

if  __name__ == '__main__':
    main()

代码调用get_gradient()时失败.追溯是漫长的,涉及很多形状,但很少有关于什么是正确形状的信息.我怎么能纠正这个?

理想情况下,我想要一个与后端无关的解决方案,但基于张量流的解决方案也是一种选择.

2017-08-15 15:39:14.914388: W tensorflow/core/framework/op_kernel.cc:1148] Invalid argument: Shape [-1,-1] has negative dimensions
2017-08-15 15:39:14.914414: E tensorflow/core/common_runtime/executor.cc:644] Executor Failed to create kernel. Invalid argument: Shape [-1,-1] has negative dimensions
         [[Node: dense_2_target = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
2017-08-15 15:39:14.915026: W tensorflow/core/framework/op_kernel.cc:1148] Invalid argument: Shape [-1,-1] has negative dimensions
2017-08-15 15:39:14.915038: E tensorflow/core/common_runtime/executor.cc:644] Executor Failed to create kernel. Invalid argument: Shape [-1,-1] has negative dimensions
         [[Node: dense_2_target = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
2017-08-15 15:39:14.915310: W tensorflow/core/framework/op_kernel.cc:1148] Invalid argument: Shape [-1] has negative dimensions
2017-08-15 15:39:14.915321: E tensorflow/core/common_runtime/executor.cc:644] Executor Failed to create kernel. Invalid argument: Shape [-1] has negative dimensions
         [[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Traceback (most recent call last):
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1139, in _do_call
    return fn(*args)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1121, in _run_fn
    status, run_Metadata)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/contextlib.py", line 89, in __exit__
    next(self.gen)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
    pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape [-1] has negative dimensions
         [[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "gradientlog.py", line 45, in <module>
    main()
  File "gradientlog.py", line 42, in main
    print(get_gradient([x]))
  File "/home/josteb/sandBox/keras/keras/backend/tensorflow_backend.py", line 2251, in __call__
    **self.session_kwargs)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 789, in run
    run_Metadata_ptr)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 997, in _run
    Feed_dict_string, options, run_Metadata)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1132, in _do_run
    target_list, options, run_Metadata)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1152, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape [-1] has negative dimensions
         [[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

Caused by op 'dense_2_sample_weights', defined at:
  File "gradientlog.py", line 45, in <module>
    main()
  File "gradientlog.py", line 39, in main
    model.compile(loss='mse', optimizer='RMSprop')
  File "/home/josteb/sandBox/keras/keras/models.py", line 783, in compile
    **kwargs)
  File "/home/josteb/sandBox/keras/keras/engine/training.py", line 799, in compile
    name=name + '_sample_weights'))
  File "/home/josteb/sandBox/keras/keras/backend/tensorflow_backend.py", line 435, in placeholder
    x = tf.placeholder(dtype, shape=shape, name=name)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 1530, in placeholder
    return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1954, in _placeholder
    name=name)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
    op_def=op_def)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 2506, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1269, in __init__
    self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): Shape [-1] has negative dimensions
         [[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

解决方法:

在Keras中有几个与梯度计算过程相关的占位符:

>输入x
>目标y
>样本权重:即使你没有在model.fit()中提供它,Keras仍会为样本权重生成一个占位符,并提供np.ones((y.shape [0],),dtype = K.floatx( ))在训练期间进入图表.
>学习阶段:只有在使用任何层(例如Dropout)时,此占位符才会连接到渐变张量.

因此,在您提供的示例中,为了计算渐变,您需要将x,y和sample_weights输入到图形中.这是错误的根本原因.

在Model._make_train_function()里面有the following lines,显示在这种情况下如何构造K.function()的必要输入:

inputs = self._Feed_inputs + self._Feed_targets + self._Feed_sample_weights
if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
    inputs += [K.learning_phase()]

with K.name_scope('training'):
    ...
    self.train_function = K.function(inputs,
                                     [self.total_loss] + self.metrics_tensors,
                                     updates=updates,
                                     name='train_function',
                                     **self._function_kwargs)

通过模仿此函数,您应该能够获得标准值:

def get_gradient_norm_func(model):
    grads = K.gradients(model.total_loss, model.trainable_weights)
    summed_squares = [K.sum(K.square(g)) for g in grads]
    norm = K.sqrt(sum(summed_squares))
    inputs = model.model._Feed_inputs + model.model._Feed_targets + model.model._Feed_sample_weights
    func = K.function(inputs, [norm])
    return func

def main():
    x = np.random.random((128,)).reshape((-1, 1))
    y = 2 * x
    model = Sequential(layers=[Dense(2, input_shape=(1,)),
                               Dense(1)])
    model.compile(loss='mse', optimizer='rmsprop')
    get_gradient = get_gradient_norm_func(model)
    history = model.fit(x, y, epochs=1)
    print(get_gradient([x, y, np.ones(len(y))]))

执行输出

Epoch 1/1
128/128 [==============================] - 0s - loss: 2.0073     
[4.4091368]

请注意,由于您使用的是Sequential而不是Model,因此需要model.model._Feed_ *而不是model._Feed_ *.

相关文章

MNIST数据集可以说是深度学习的入门,但是使用模型预测单张M...
1、新建tensorflow环境(1)打开anacondaprompt,输入命令行...
这篇文章主要介绍“张量tensor是什么”,在日常操作中,相信...
tensorflow中model.fit()用法model.fit()方法用于执行训练过...
https://blog.csdn.net/To_be_little/article/details/12443...
根据身高推测体重const$=require('jquery');const...