tensorflow增强学习应用于一个小游戏

首先需要安装gym模块,提供游戏的。

1,所需模块

import tensorflow as tf
import numpy as np
import gym
import random
from collections import deque
from keras.utils.np_utils import to_categorical

2,自定义一个简单的3层Dense Model

# 自定义Model
class QNetwork(tf.keras.Model):
    def __init__(self):
        super().__init__()
#         简单的3个Dense
        self.dense1=tf.keras.layers.Dense(24,activation='relu')
        self.dense2=tf.keras.layers.Dense(24,activation='relu')
        self.dense3=tf.keras.layers.Dense(2)
    def call(self,inputs):
        x=self.dense1(inputs)
        x=self.dense2(x)
        x=self.dense3(x)
        return x
    def predict(self,inputs):
        q_values=self(inputs)#调用call
        return tf.argmax(q_values,axis=-1)

3,定义相关参数

# 游戏环境,实例化一个游戏
env=gym.make('CartPole-v1')
model=QNetwork()

# 循环轮数设置小一点,50就可以了
num_episodes=500
num_exploration=100
max_len=1000
batch_size=32
lr=1e-3
gamma=1.
initial_epsilon=1.
final_epsilon=0.01
replay_buffer=deque(maxlen=10000)

epsilon=initial_epsilon
# tensorflow2.0
optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=lr)

4,训练,测试

for i in range(num_episodes):
    # 初始化环境
    state=env.reset()
#     逐渐衰减,至final_epsilon
    epsilon=max(initial_epsilon*(num_exploration-i)/num_exploration,final_epsilon)
    for t in range(max_len):
#         当前帧绘制到屏幕
        env.render()
#         以epsilon的概率随机行动,epsilon是衰减的,说明游戏动作会越来越稳定
        if random.random()<epsilon:
            action=env.action_space.sample()
        else:
#             从当前状态预测一个动作
            action=model.predict(tf.constant(np.expand_dims(state,axis=0),dtype=tf.float32)).numpy()
            action=action[0]
#         执行一步动作
        next_state,reward,done,info=env.step(action)
#         奖励
        reward=-10.if done else reward
#         缓存
        replay_buffer.append((state,action,reward,next_state,done))
        state=next_state
        if done:
            print('episode %d,epsilon %f,score %d'%(i,epsilon,t))
            break
#         预测batch_size步后执行
        if len(replay_buffer)>=batch_size:
            # 随机获取一个batch的数据
            batch_state,batch_action,batch_reward,batch_next_state,batch_done=\
            [np.array(a,dtype=np.float32) for a in zip(*random.sample(replay_buffer,batch_size))]
#             下一个状态,由此得到的y为真实值
#             预测值与真实值的计算看不太懂
            q_value=model(tf.constant(batch_next_state,dtype=tf.float32))
            y=batch_reward+(gamma*tf.reduce_max(q_value,axis=1))*(1-batch_done)
            with tf.GradientTape() as tape:
#                 loss=tf.losses.mean_squared_error(labels=y,predictions=tf.reduce_sum(
#                     model(tf.constant(batch_state))*tf.one_hot(batch_action,depth=2),axis=1))
                loss=tf.losses.mean_squared_error(y,tf.reduce_sum(
                    model(tf.constant(batch_state))*to_categorical(batch_action,num_classes=2),axis=1))
            grads=tape.gradient(loss,model.variables)
            optimizer.apply_gradients(grads_and_vars=zip(grads,model.variables))

最终会出现一个窗口,平衡游戏不断进行。。。

上面注释部分因为tf.one_hot方法会报错。

相关文章

MNIST数据集可以说是深度学习的入门,但是使用模型预测单张M...
1、新建tensorflow环境(1)打开anacondaprompt,输入命令行...
这篇文章主要介绍“张量tensor是什么”,在日常操作中,相信...
tensorflow中model.fit()用法model.fit()方法用于执行训练过...
https://blog.csdn.net/To_be_little/article/details/12443...
根据身高推测体重const$=require('jquery');const...