python-熊猫groupby和value_counts

我想对每列中的不同值(我猜是pd.value_counts)进行计数,以便在MultiIndex中按某种级别对数据进行分组.使用groupby(level =参数可以处理multiindex,但是apply会引发ValueError

原始数据框:

>>> df = pd.DataFrame(np.random.choice(list('ABC'), size=(10,5)),
                 columns=['c1','c2','c3','c4','c5'], 
                 index=pd.MultiIndex.from_product([['foo', 'bar'], 
                                                   ['w','y','x','y','z']]))



      c1 c2 c3 c4 c5
foo w  C  C  B  A  A
    y  A  A  C  B  A
    x  A  B  C  C  C
    y  A  B  C  C  C
    z  A  C  B  C  B
bar w  B  C  C  A  C
    y  A  A  C  A  A
    x  A  B  B  B  A
    y  A  A  C  A  B
    z  A  B  B  C  B

我想要的是:

       c1  c2  c3  c4  c5
foo A   4   2   0   3   2
    B   1   2   2   1   2
    C   0   1   3   1   1
bar A   4   1   0   1   2
    B   0   2   2   1   1
    C   1   2   3   3   2

我尝试做:

>>> df.groupby(level=0).apply(pd.value_counts)

ValueError: Could not broadcast input array from shape (5,5) into shape (5)

我自己可以手动完成此操作,但我认为这必须是更明显的方法.

groups = [g.apply(pd.value_counts).fillna(0) for n, g in df.groupby(level=0)]
index = df.index.get_level_values(0).unique()
correct_result = pd.concat(groups, keys=index)   # THIS WORKS AS EXPECTED

我的意思是,写这本书的时间并不长,但是我觉得自己正在重新发明轮子.这种操作不是由groupby函数完成的吗?

除了自己进行拆分应用合并之外,还有其他更直接的方法吗?

解决方法:

对于MultiIndex Series,请使用stack,然后对DataFrame使用SeriesGroupBy.value_counts,最后使用unstack

np.random.seed(123)

df = pd.DataFrame(np.random.choice(list('ABC'), size=(10,5)),
                 columns=['c1','c2','c3','c4','c5'], 
                 index=pd.MultiIndex.from_product([['foo', 'bar'], 
                                                   ['w','y','x','y','z']]))
print (df)
      c1 c2 c3 c4 c5
foo w  C  B  C  C  A
    y  C  C  B  C  B
    x  C  B  A  B  C
    y  B  A  C  A  B
    z  C  B  A  A  A
bar w  A  B  C  A  C
    y  A  A  B  A  B
    x  A  A  A  C  B
    y  B  C  C  C  B
    z  A  A  C  B  A

df1 = df.stack().groupby(level=[0,2]).value_counts().unstack(1, fill_value=0)
print (df1)
       c1  c2  c3  c4  c5
bar A   4   3   1   2   1
    B   1   1   1   1   3
    C   0   1   3   2   1
foo A   0   1   2   2   2
    B   1   3   1   1   2
    C   4   1   2   2   1

相关文章

转载:一文讲述Pandas库的数据读取、数据获取、数据拼接、数...
Pandas是一个开源的第三方Python库,从Numpy和Matplotlib的基...
整体流程登录天池在线编程环境导入pandas和xrld操作EXCEL文件...
 一、numpy小结             二、pandas2.1为...
1、时间偏移DateOffset对象DateOffset类似于时间差Timedelta...
1、pandas内置样式空值高亮highlight_null最大最小值高亮背景...