GRU算法原理

编程之家收集整理的这篇文章主要介绍了GRU算法原理编程之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

搜索热词

一、GRU算法

  GRU(Gate Recurrent Unit,循环门单元)是循环神经网络(Recurrent Neural Network,RNN)的一种。和LSTM(Long-Short Term Memory)一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。

  在LSTM中引入了三个门函数:输入门、遗忘门和输出门来控制输入值、记忆值和输出值。而在GRU模型中只有两个门:分别是更新门和重置门。具体结构如下图所示:    

  图中的zt和rt分别表示更新门和重置门。更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越多。重置门控制前一状态有多少信息被写入到当前的候选集 ̃t上,重置门越小,前一状态的信息被写入的越少。

  GRU组合了遗忘门和输入门到一个单独的更新门当中,也合并了细胞状态​ C和隐藏状态h​,并且还做了一些其他的改变,使得其模型比标准LSTM​模型更简单,其数学表达式为:

[公式]

  其中,门控信号zt的范围为0~1。门控信号越接近1,代表”记忆“下来的数据越多;而越接近0则代表”遗忘“的越多。

二、总结

  GRU输入输出的结构与普通的RNN相似,其中的内部思想与LSTM相似。

  与LSTM相比,GRU内部少了一个”门控“,参数比LSTM少,但是却也能够达到与LSTM相当的功能。考虑到硬件的计算能力和时间成本,因而很多时候我们也就会选择更加”实用“的GRU。

 

参考:

https://zhuanlan.zhihu.com/p/32481747

https://www.cnblogs.com/jiangxinyang/p/9376021.html

https://zhuanlan.zhihu.com/p/72500407

https://zhuanlan.zhihu.com/p/97027947

总结

以上是编程之家为你收集整理的GRU算法原理全部内容,希望文章能够帮你解决GRU算法原理所遇到的程序开发问题。

如果觉得编程之家网站内容还不错,欢迎将编程之家网站推荐给程序员好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
如您喜欢寻找一群志同道合、互帮互助的学习伙伴,可以点击下方链接加入:
编程之家官方1群:1065694478(已满)
编程之家官方2群:163560250(已满)
编程之家官方3群:312128206(已满)
编程之家官方4群:230427597

相关文章

猜你在找的NLP相关文章

HMM模型将标注看作马尔可夫链,一阶马尔可夫链式针对相邻标注的关系进行建模,其中每个标记对应一个概率函数。HMM是一种生成模型,定义了联合概率分布,其中x和y分别表示观察序列和相对应的标注序列的随机变
一、GRU算法 GRU(Gate Recurrent Unit,循环门单元)是循环神经网络(Recurrent Neural Network, RNN)的一种。和LSTM(Long-Short Ter
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常
什么是注意力(Attention)? 注意力机制可看作模糊记忆的一种形式。记忆由模型的隐藏状态组成,模型选择从记忆中检索内容。深入了解注意力之前,先简要回顾Seq2Seq模型。传统的机器翻译主要基于S
BERT 模型是 Google 在 2018 年提出的一种 NLP 模型,成为最近几年 NLP 领域最具有突破性的一项技术。在 11 个 NLP 领域的任务上都刷新了以往的记录,例如GLUE,SquA
一、前言 文本分类(Text Classification或Text Categorization,TC),或者称为自动文本分类(Automatic Text Categorization),是指计算
TextRank 算法是一种用于文本的基于图的排序算法,其基本思想来源于谷歌的 PageRank算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之间的相似度作为边的权重,通过循环迭代
目录 Transformer 1. 前言 2. Transformer详解3. 总结 2.1 Transformer整体结构 2.2 输入编码 2.3 Self-Attention 2.4 Multi