Pyspark Groupby在课程中应用UDF

问题描述

TLDR ;在pyspark的类中进行groupby-apply UDF时,我无法弄清楚如何在bioID列中保留信息。

详细信息

我正在为需要在主题1和主题2之间比较计数的管道创建一个类。

df = spark.createDataFrame(pd.DataFrame({
    "comparison": ["subject1_v_subject2","subject1_v_subject2","subject1_v_subject2"],"bioID":["AAG","ATT","ATG"],"subject1":[12,15,17],"subject3":[123,107,110],"pvalue":[.01,.015,0.112]
        },index=[1,2,3]))

       comparison         bioId       subject1  subject3    pvalue    
1   subject1_v_subject    "AAG"         212       123        0.010         
2   subject1_v_subject2   "ATT"          15       107        0.015         
3.  subject1_v_subject2   "ATG"          17       110        0.112 

我需要获取此数据帧并在比较中运行所有pvalue(也称为groupby比较列),运行BH计算以获取排序的pvalue,对其进行排名,然后根据self.alpha返回布尔值以标记是否pvalue是否有意义。

我尝试创建一个单独的类并从主类中调用它,但是我无法弄清楚如何保留bioId列以将结果连接回原始数据框:

class BenjaminiHochbergfdr():

__name__ = "BenjaminiHochbergfdr"

# any input that is static across all rows can be set at initialization time
def __init__(self,alpha):
    self.alpha = alpha

# any input that's based on a single row's value goes here
def __call__(self,pvals):
    m = len(pvals)
    k = -1

    while pvals[k + 1] <= (self.alpha * (k + 2) / (1.0 * m)):
        k += 1

    return [1] * (k + 1) + [0] * (m - (k + 1))

class DifferentialAbundanceAnalysis():

def __init__(self,spark,input_df,alpha=.01):
    # set user input variables
    self.spark = spark
    self.input_df = input_df
    self.alpha = alpha

  def run_bh(self,alpha):
    
    # BH fdr correction UDF to apply function to pval_df
    bh_udf = F.udf(BenjaminiHochbergfdr(self.alpha),ArrayType(StringType()))
    
    # apply bh correction to pval df and run bh udf on list of pvals for each comparison
    sig_df = input_df.groupBy("comparison") \
                  .agg(collect_list("pvalue").alias("pvals")) \
                  .withColumn("significant",bh_udf("pvals")) \
                  .withColumn('significant',F.explode(F.col('significant'))) \
                  .withColumn('pvalue',F.explode(F.col('pvals'))).drop_duplicates()
    
    # this does not work as expected
    final_df = pval_df.join(sig_df,on=["comparison","pvalue"],how='left').drop("pvals")
    
    return final_df

所需的输出

         comparison       bioId       subject1  subject3    pvalue    significant
1   subject1_v_subject    "AAG"         212       123        0.010         0
2   subject1_v_subject2   "ATT"          15       107        0.015         0
3.  subject1_v_subject2   "ATG"          17       110         0.112        0

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)