GEKKO和Scipy.optimize在非线性参数估计中导致不同的结果

问题描述

我正在学习如何使用GEKKO解决参数估计问题,并且 作为第一步,我正在开发示例问题 以前使用Scipy最小化例程实现。这些有 按照APMonitor.com和 内有课程。当前的问题是间歇反应器 从以下获得的甲醇制烃过程的模拟: http://www.daetools.com/docs/tutorials-all.html#tutorial-che-opt-5

可以在进一步描述的代码中遵循模型描述 下面,但考虑的基本步骤是:

  • A-> B
  • A + B-> C
  • C + B-> P
  • A-> C
  • A-> P
  • A + B-> P

可获得有关A,C和P浓度的实验数据 作为时间的函数。该模型的目标是估计速率 六个基本反应(k1-k6)的常数。我的困难 我现在遇到的是我的GEKKO模型和我的Scipy.optimize

    尽管使用相同的实验数据和参数的初始猜测,但基于
  • 的模型仍会导致不同的参数估计。一世 还将该模型与使用gPROMS和Athena开发的模型进行了比较 Visual Studio,scipy模型与参数一致 通过这些封闭源程序获得的估算值。估计 每个程序的参数如下所示:
  • Scipy模型(L-BFGS-B优化器):[k1 k2 k3 k4 k5 k6] = [2.779,0.,0.197,3.042,2.148,0.541]

  • GEKKO模型(IPOPT优化器):[k1 k2 k3 k4 k5 k6] = [3.7766387559,1.1826920269e-07,0.21242442412,4.130394645,2.4232122905,3.3140978171]

有趣的是,两个模型都得出相同的目标函数值 在优化结束时的0.0123,在图中看起来相似 浓度与时间的关系。我试过换GEKKO的 优化程序并将公差提高到1E-8,但无济于事。我的猜测是 我的GEKKO模型没有正确设置,但是我找不到问题 用它。任何帮助将使我指出可能 可能导致模型差异的问题。我附上 下面的两个脚本:
 Scipy model


    import numpy as np
    from scipy.integrate import solve_ivp
    from scipy.optimize import minimize
    import matplotlib.pyplot as plt
    
    #Experimental data
    times  = np.array([0.0,0.071875,0.143750,0.215625,0.287500,0.359375,0.431250,0.503125,0.575000,0.646875,0.718750,0.790625,0.862500,0.934375,1.006250,1.078125,1.150000])
    A_obs = np.array([1.0,0.552208,0.300598,0.196879,0.101175,0.065684,0.045096,0.028880,0.018433,0.011509,0.006215,0.004278,0.002698,0.001944,0.001116,0.000732,0.000426])
    C_obs = np.array([0.0,0.187768,0.262406,0.350412,0.325110,0.367181,0.348264,0.325085,0.355673,0.361805,0.363117,0.327266,0.330211,0.385798,0.358132,0.380497,0.383051])
    P_obs = np.array([0.0,0.117684,0.175074,0.236679,0.234442,0.270303,0.272637,0.274075,0.278981,0.297151,0.297797,0.298722,0.326645,0.303198,0.277822,0.284194,0.301471])
    
    def rxn(x,k): #rate equations in power law form r = k [A][B]
        A = x[0]
        B = x[1]
        C = x[2]
        P = x[3]
        
        k1 = k[0]
        k2 = k[1]
        k3 = k[2]
        k4 = k[3]
        k5 = k[4]
        k6 = k[5]
        
        r1 = k1 * A
        r2 = k2 * A * B
        r3 = k3 * C * B
        r4 = k4 * A
        r5 = k5 * A
        r6 = k6 * A * B
        
        return [r1,r2,r3,r4,r5,r6] #returns reaction rate of each equation
    
    #mass balance diff eqs,function calls rxn function 
    
    def mass_balances(t,x,*args): 
            k = args
            r = rxn(x,k)
            dAdt = - r[0] - r[1] - r[3] - r[4] - r[5]
            dBdt = + r[0] - r[1] - r[2] - r[5]
            dCdt = + r[1] - r[2] + r[3]
            dPdt = + r[2] + r[4] + r[5]
    
            return [dAdt,dBdt,dCdt,dPdt]
        
    IC = [1.0,0] #Initial conditions of species A,B,C,P
    ki= [1,1,1]
    
    #Objective function definition
    
    def obj_fun(k):   
    #solve initial value problem over time span of data
        sol  = solve_ivp(mass_balances,[min(times),max(times)],IC,args = (k),t_eval=(times)) 
        y_model = np.vstack((sol.y[0],sol.y[2],sol.y[3])).T
        obs = np.vstack((A_obs,C_obs,P_obs)).T
        err = np.sum((y_model-obs)**2)
   
        return err
    
    bnds = ((0,None),(0,None))
    model = minimize(obj_fun,ki,bounds=bnds,method = 'L-BFGS-B')
    k_opt = model.x
    
    print(k_opt.round(decimals = 3))
    
    y_calc = solve_ivp(mass_balances,args = (model.x),t_eval=(times)) 
    
    plt.plot(y_calc.t,y_calc.y.T)
    plt.plot(times,A_obs,'bo')
    plt.plot(times,'gx')
    plt.plot(times,P_obs,'rs')

    GEKKO Model

    import numpy as np
    import matplotlib.pyplot as plt
    from gekko import GEKKO
    
    #Experimental data
    times  = np.array([0.0,0.301471])
    
    
    m = GEKKO(remote = False)
    
    t = m.time = times
    
    
    Am = m.CV(value=A_obs,lb = 0)
    Cm = m.CV(value=C_obs,lb = 0)
    Pm = m.CV(value=P_obs,lb = 0)
    
    A = m.Var(1,lb = 0)
    B = m.Var(0,lb = 0)
    C = m.Var(0,lb = 0)
    P = m.Var(0,lb = 0)
    
    Am.FSTATUS = 1
    Cm.FSTATUS = 1
    Pm.FSTATUS = 1
        
    k1 = m.FV(1,lb = 0)
    k2 = m.FV(1,lb = 0)
    k3 = m.FV(1,lb = 0)
    k4 = m.FV(1,lb = 0)
    k5 = m.FV(1,lb = 0)
    k6 = m.FV(1,lb = 0)
    
    k1.STATUS = 1
    k2.STATUS = 1
    k3.STATUS = 1
    k4.STATUS = 1
    k5.STATUS = 1
    k6.STATUS = 1
    
    r1 = m.Var(0,lb = 0)
    r2 = m.Var(0,lb = 0)
    r3 = m.Var(0,lb = 0)
    r4 = m.Var(0,lb = 0)
    r5 = m.Var(0,lb = 0)
    r6 = m.Var(0,lb = 0)
       
    m.Equation(r1 == k1 * A)
    m.Equation(r2 == k2 * A * B)
    m.Equation(r3 == k3 * C * B)
    m.Equation(r4 == k4 * A)
    m.Equation(r5 == k5 * A)
    m.Equation(r6 == k6 * A * B)
        
    
    #mass balance diff eqs,function calls rxn function 
    m.Equation(A.dt() == - r1 - r2 - r4 - r5 - r6)
    m.Equation(B.dt() ==  r1 - r2 - r3 - r6)
    m.Equation(C.dt() ==  r2 - r3 + r4)
    m.Equation(P.dt() ==  r3 + r5 + r6)
    
    m.Obj((A-Am)**2+(P-Pm)**2+(C-Cm)**2)
    
    
    m.options.IMODE = 5
    m.options.SOLVER = 3 #IPOPT optimizer
    m.options.RTOL = 1E-8
    m.options.OTOL = 1E-8
    m.solve()
    
    k_opt = [k1.value[0],k2.value[0],k3.value[0],k4.value[0],k5.value[0],k6.value[0]]
    print(k_opt)
    plt.plot(t,A)
    plt.plot(t,C)
    plt.plot(t,P)
    plt.plot(t,B)
    plt.plot(times,'rs')

解决方法

以下是一些建议:

  • 设置m.options.NODES=3或更高(最多6)以获得更好的集成精度。
  • AmCmPm设置为参数而不是变量。它们是固定输入。
  • 尝试不同的初始条件。可能有多个局部最小值。
  • 目标函数可能是平坦的,因此不同的参数值会给出相同的目标函数值。您可以test the parameter confidence intervals来查看数据是给出窄的还是宽的联合置信区间。

以下是修改后的结果:

parameter estimation

import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO

#Experimental data
times  = np.array([0.0,0.071875,0.143750,0.215625,0.287500,0.359375,0.431250,0.503125,0.575000,0.646875,0.718750,0.790625,0.862500,0.934375,1.006250,1.078125,1.150000])
A_obs = np.array([1.0,0.552208,0.300598,0.196879,0.101175,0.065684,0.045096,0.028880,0.018433,0.011509,0.006215,0.004278,0.002698,0.001944,0.001116,0.000732,0.000426])
C_obs = np.array([0.0,0.187768,0.262406,0.350412,0.325110,0.367181,0.348264,0.325085,0.355673,0.361805,0.363117,0.327266,0.330211,0.385798,0.358132,0.380497,0.383051])
P_obs = np.array([0.0,0.117684,0.175074,0.236679,0.234442,0.270303,0.272637,0.274075,0.278981,0.297151,0.297797,0.298722,0.326645,0.303198,0.277822,0.284194,0.301471])

m = GEKKO(remote=False)

t = m.time = times

Am = m.Param(value=A_obs,lb = 0)
Cm = m.Param(value=C_obs,lb = 0)
Pm = m.Param(value=P_obs,lb = 0)

A = m.Var(1,lb = 0)
B = m.Var(0,lb = 0)
C = m.Var(0,lb = 0)
P = m.Var(0,lb = 0)

k = m.Array(m.FV,6,value=1,lb=0)  
for ki in k:
    ki.STATUS = 1
k1,k2,k3,k4,k5,k6 = k

r1 = m.Var(0,lb = 0)
r2 = m.Var(0,lb = 0)
r3 = m.Var(0,lb = 0)
r4 = m.Var(0,lb = 0)
r5 = m.Var(0,lb = 0)
r6 = m.Var(0,lb = 0)
   
m.Equation(r1 == k1 * A)
m.Equation(r2 == k2 * A * B)
m.Equation(r3 == k3 * C * B)
m.Equation(r4 == k4 * A)
m.Equation(r5 == k5 * A)
m.Equation(r6 == k6 * A * B)

#mass balance diff eqs,function calls rxn function 
m.Equation(A.dt() == - r1 - r2 - r4 - r5 - r6)
m.Equation(B.dt() ==  r1 - r2 - r3 - r6)
m.Equation(C.dt() ==  r2 - r3 + r4)
m.Equation(P.dt() ==  r3 + r5 + r6)

m.Minimize((A-Am)**2)
m.Minimize((P-Pm)**2)
m.Minimize((C-Cm)**2)

m.options.IMODE = 5
m.options.SOLVER = 3 #IPOPT optimizer
m.options.RTOL = 1E-8
m.options.OTOL = 1E-8
m.options.NODES = 5
m.solve()

k_opt = []
for ki in k:
    k_opt.append(ki.value[0])
print(k_opt)

plt.plot(t,A)
plt.plot(t,C)
plt.plot(t,P)
plt.plot(t,B)
plt.plot(times,A_obs,'bo')
plt.plot(times,C_obs,'gx')
plt.plot(times,P_obs,'rs')
plt.show()

相关问答

错误1:Request method ‘DELETE‘ not supported 错误还原:...
错误1:启动docker镜像时报错:Error response from daemon:...
错误1:private field ‘xxx‘ is never assigned 按Alt...
报错如下,通过源不能下载,最后警告pip需升级版本 Requirem...