我正在尝试使用“小时”列进行分箱,但是它不起作用

问题描述

我有一个DF,每次都有一系列的积分,我想在一天的每个小时(从00:00:00到24:00:00)将其分组到存储桶中

这是我称为dfH的一部分df:

     Hora de início Rodada
00:00:00     636
00:00:07    1184
00:00:09     680
00:00:23     651
00:00:30     539
00:01:16    1076
00:01:44     925
00:02:00     229
00:02:48     452
00:03:06    1143
00:03:55     401
00:04:10    1148
00:04:20     677
00:04:26     552
00:05:10    1182
00:05:44     677
00:06:03     657
00:06:23    1172
00:06:34     428
00:06:59     662
00:07:05    1131
00:07:30     675
00:07:53    1175
00:08:06    1121
00:08:33     564
00:08:43     673
00:08:45     670
00:09:06    1014
00:09:17     449
00:09:19    1156
Name: (TOTAL ESTRELAS,TOTAL),dtype: int64

我正在尝试:

bins = np.arange(0,24,1)

groups = dfH.groupby(pd.cut(dfH,bins))。sum()

但是我得到:

(TOTAL ESTRELAS,TOTAL)
(0,1]      0
(1,2]      0
(2,3]      0
(3,4]      0
(4,5]      0
(5,6]      0
(6,7]      0
(7,8]      0
(8,9]      0
(9,10]     0
(10,11]    0
(11,12]    0
(12,13]    0
(13,14]    0
(14,15]    0
(15,16]    0
(16,17]    0
(17,18]    0
(18,19]    0
(19,20]    0
(20,21]    0
(21,22]    0
(22,23]    0
Name: (TOTAL ESTRELAS,dtype: int64

也许索引格式不是小时格式,所以我尝试了:

dfH.index = pd.to_datetime(dfH.index,format ='%H:%M:%S')。dtype.hour

但是我得到了错误:

ValueError:时间数据“ TOTAL”与格式“%H:%M:%S”(匹配)不匹配

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)