无法训练基于注意力的CNN

问题描述

我已经定义了链接中给出的注意力模型 InvalidArgumentError: in model.fit.generator in tensorflow,我的基本模型是

model_base = Sequential()
# Conv Layer 1
model_base.add(layers.SeparableConv2D(32,(9,9),activation='relu',input_shape=input_shape))
model_base.add(layers.MaxPooling2D(2,2))
# model.add(layers.Dropout(0.25))

# Conv Layer 2
model_base.add(layers.SeparableConv2D(64,activation='relu'))
model_base.add(layers.MaxPooling2D(2,2))
# model.add(layers.Dropout(0.25))

# Conv Layer 3
model_base.add(layers.SeparableConv2D(128,2))
# model.add(layers.Dropout(0.25))

model_base.add(layers.Conv2D(256,activation='relu'))
# model.add(layers.MaxPooling2D(2,2))
# Flatten the data for upcoming dense layer
#model_base.add(layers.Flatten())
#model_base.add(layers.Dropout(0.5))
#model_base.add(layers.Dense(512,activation='relu'))

print(model_base.summary())```


I face difficulty in training this model with an image dataset. It gives some mismatch in tensor dimension. can someone help?

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)