这种自动编码器架构的损耗binary_crossentropy停滞在0.601附近

问题描述

我正在研究一个无监督的图像分类问题,该数据集包含约4700张食肉动物照片。我想到了通过构造自动编码器并获取图像嵌入,然后应用余弦相似度来实现此任务的方法。我没有太大的进步。这是我的自动编码器体系结构:

Model: "functional_75"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_19 (InputLayer)        [(None,128,3)]     0         
_________________________________________________________________
conv2d_126 (Conv2D)          (None,64)      1792      
_________________________________________________________________
max_pooling2d_54 (MaxPooling (None,64,64)        0         
_________________________________________________________________
conv2d_127 (Conv2D)          (None,32)        18464     
_________________________________________________________________
max_pooling2d_55 (MaxPooling (None,32,32)        0         
_________________________________________________________________
conv2d_128 (Conv2D)          (None,16)        4624      
_________________________________________________________________
max_pooling2d_56 (MaxPooling (None,16,16)        0         
_________________________________________________________________
conv2d_129 (Conv2D)          (None,16)        2320      
_________________________________________________________________
up_sampling2d_54 (UpSampling (None,16)        0         
_________________________________________________________________
conv2d_130 (Conv2D)          (None,32)        4640      
_________________________________________________________________
up_sampling2d_55 (UpSampling (None,32)        0         
_________________________________________________________________
conv2d_131 (Conv2D)          (None,64)        18496     
_________________________________________________________________
conv2d_132 (Conv2D)          (None,3)         1731      
_________________________________________________________________
up_sampling2d_56 (UpSampling (None,3)       0         
=================================================================
Total params: 52,067
Trainable params: 52,067
Non-trainable params: 0
_________________________________________________________________

请提出一些改进建议。

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)