问题描述
嘿,我是这个级别的Python新手,但我正在尽力做到这一点。 我已经在视频帧中检测到对象并对其进行了标记,并且还对帧中的对象总数进行了计数,但是我的问题是,通过图像中所示的行后如何计数对象。以及对象类别。
在图像中,我已经计算了框架中的全部对象,但是当它们越过线时,我想对它们进行计数
预先感谢:)
import cv2
import numpy as np
net = cv2.dnn.readNet('yolov3.weights','yolov3.cfg')
classes = []
with open('coco.names','r') as f:
classes = f.read().splitlines()
# printing the data which is loaded from the names file
#print(classes)
cap = cv2.VideoCapture('video.mp4')
while True:
_,img = cap.read()
height,width,_ = img.shape
blob = cv2.dnn.blobFromImage(img,1/255,(416,416),(0,0),swapRB=True,crop=False)
net.setInput(blob)
output_layer_names = net.getUnconnectedOutLayersNames()
layerOutput = net.forward(output_layer_names)
Boxes = []
person =0
truck =0
car = 0
confidences = []
class_ids =[]
for output in layerOutput:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0]*width)
center_y = int(detection[1]*height)
w = int(detection[2]*width)
h = int(detection[3]*height)
x = int(center_x - w/2)
y = int(center_y - h/2)
Boxes.append([x,y,w,h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(Boxes,confidences,0.5,0.4)
font = cv2.QT_FONT_norMAL
colors = np.random.uniform(0,255,size=(len(Boxes),3))
for i in indexes.flatten():
labelsss = str(classes[class_ids[i]])
if(labelsss == 'person'):
person+=1
if(labelsss == 'car'):
car+=1
if(labelsss == 'truck'):
truck+=1
for i in indexes.flatten():
x,h = Boxes[i]
label =str(classes[class_ids[i]])
confidence = str(round(confidences[i],1))
color = colors[i]
cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
cv2.line(img,(1000,250),(5,2)
cv2.putText(img,label + " ",y+20),font,(255,255),2)
cv2.putText(img,'Car'+ ":" + str(car),(20,20),0.8,'Person'+ ":" + str(person),50),'Truck'+ ":" + str(truck),80),2)
cv2.imshow('Image',img)
key = cv2.waitKey(1)
if key == 10:
break
cap.release()
cv2.destroyAllWindows()
解决方法
我在实习期间做了一个类似的项目。您可以在此处查看代码:https://github.com/sarimmehdi/nanonets_object_tracking/blob/master/test_on_video.py
简而言之:您应该改为绘制一个矩形(窄),并在跟踪的ID通过矩形时对其计数。如果矩形足够窄,则也可以避免重新识别的问题。