根据条件填充df的NaN-值并添加行

问题描述

我有这个df:

df = pd.DataFrame({"Time": ["2020-04-09 06:40:40.559719","2020-04-09 06:40:40.559719",'NaT','2020-04-09 16:50:38.559871','2020-04-29 16:50:38.559871'],"Power": [7500,6000,'NaN',3600,4200],"Total Energy": [5000,5100,5300,5360,5500],"ID": [1,1,2,2],"Energy": [500,600,800,60,200]},index=pd.date_range(start = "2020-04-09 6:45",periods = 10,freq = 'T'))

df['Time'] = pd.to_datetime(df['Time'])
df['Power'] = pd.to_numeric(df['Power'],errors = 'coerce')
df['Total Energy'] = pd.to_numeric(df['Total Energy'],errors = 'coerce')
df['ID'] = pd.to_numeric(df['ID'],errors = 'coerce')
df['Energy'] = pd.to_numeric(df['Energy'],errors = 'coerce')

df

输出

                                          Time   Power  Total Energy     ID Energy
2020-04-09 06:45:00 2020-04-09 06:40:40.559719  7500.0        5000.0    1.0  500.0
2020-04-09 06:46:00 2020-04-09 06:40:40.559719  6000.0        5100.0    1.0  600.0
2020-04-09 06:47:00                        NaT     NaN           NaN    NaN    NaN
2020-04-09 06:48:00 2020-04-09 06:40:40.559719  6000.0        5300.0    1.0  800.0
2020-04-09 06:49:00                        NaT     NaN           NaN    NaN    NaN
2020-04-09 06:50:00                        NaT     NaN           NaN    NaN    NaN
2020-04-09 06:51:00                        NaT     NaN           NaN    NaN    NaN
2020-04-09 06:52:00 2020-04-09 16:50:38.559871  3600.0        5360.0    2.0   60.0
2020-04-09 06:53:00                        NaT     NaN           NaN    NaN    NaN
2020-04-09 06:54:00 2020-04-29 16:50:38.559871  4200.0        5500.0    2.0  200.0

现在我想根据不同的条件填写NaN / NaT值,并在缺少df时添加一些行:

  1. df ['Time']:创建新行,直到df ['Timestamp'] = df ['Time']
  2. 填充新行:第一行df ['Energy'] = 0,而不是线性填充;第一行的df ['Power'] = 0,而不是df ['Power'] = df ['Energy'] /(1/60); df ['Time']和df ['ID']用bfill()填充; df ['Total Energy'] = df ['Energy']的总和
  3. 两个不同时间之间的界线:按预期结果填充
  4. 时间序列中的NaN值(例如@ 2020-04-09 06:47:00):带有ffill()的df ['Time']和df ['ID']; df ['Energy'] =现有线之间的差异(如果有更多的NaN线->线性插入); df ['Total Energy'] =旧值+ df ['Energy']; df ['Power'] = df ['Energy'] /(1/60)

预期输出

                                         Time     Power    Total Energy    ID  Energy
2020-04-09 06:41:00 2020-04-09 06:40:40.559719        0          4500.0   1.0       0
2020-04-09 06:42:00 2020-04-09 06:40:40.559719   7500.0          4625.0   1.0   125.0
2020-04-09 06:43:00 2020-04-09 06:40:40.559719   7500.0          4750.0   1.0   250.0
2020-04-09 06:44:00 2020-04-09 06:40:40.559719   7500.0          4875.0   1.0   375.0
2020-04-09 06:45:00 2020-04-09 06:40:40.559719   7500.0          5000.0   1.0   500.0
2020-04-09 06:46:00 2020-04-09 06:40:40.559719   6000.0          5100.0   1.0   600.0
2020-04-09 06:47:00 2020-04-09 06:40:40.559719   6000.0          5200.0   1.0   700.0
2020-04-09 06:48:00 2020-04-09 06:40:40.559719   6000.0          5300.0   1.0   800.0
2020-04-09 06:49:00 -                                 0          5300.0     -       0
2020-04-09 06:50:00 -                                 0          5300.0     -       0
2020-04-09 06:51:00 2020-04-09 16:50:38.559871        0          5300.0   2.0       0
2020-04-09 06:52:00 2020-04-09 16:50:38.559871   3600.0          5360.0   2.0    60.0
2020-04-09 06:53:00 2020-04-09 16:50:38.559871   4200.0          5430.0   2.0   130.0
2020-04-09 06:54:00 2020-04-29 16:50:38.559871   4200.0          5500.0   2.0   200.0

感谢您的帮助! :)

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)