问题描述
template <typename T,typename C>
__global__
void cuda_ListArray_num(
C *tonum,const T *fromstarts,const T *fromstops
) {
int64_t block_id = blockIdx.x + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int64_t thread_id = block_id * blockDim.x + threadIdx.x;
int64_t start = fromstarts[thread_id];
int64_t stop = fromstops[thread_id];
tonum[thread_id] = (C) (stop - start);
}
ERROR
awkward_ListArray32_num_64(
int64_t* tonum,const int32_t* fromstarts,const int32_t* fromstops,int64_t length) {
dim3 blocks_per_grid;
dim3 threads_per_block;
if (length > 1024) {
blocks_per_grid = dim3(ceil((length) / 1024.0),1,1);
threads_per_block = dim3(1024,1);
} else {
blocks_per_grid = dim3(1,1);
threads_per_block = dim3(length,1);
}
cuda_ListArray_num<int32_t,int64_t><<<blocks_per_grid,threads_per_block>>>(
tonum,fromstarts,fromstops);
cudaDeviceSynchronize();
return success();
}
我可以将其添加到.so
文件中,然后使用ctypes
从Python加载它。之后,我尝试从Python使用它,
这是在上面的代码块中返回的ERROR
结构的Python等效项-
class Error(ctypes.Structure):
_fields_ = [
("str",ctypes.POINTER(ctypes.c_char)),("identity",ctypes.c_int64),("attempt",("pass_through",ctypes.c_bool),]
这是我尝试从Python使用它的方式-
lib = ctypes.CDLL("cuda-kernels.so")
funcC = getattr(lib,'awkward_ListArray32_num_64')
funcC.restype = Error
tonum = cupy.array([123,123,123],dtype=cupy.in64)
tonumx = ctypes.cast(tonum.data.ptr,ctypes.POINTER(ctypes.c_int64))
fromstarts = cupy.array([2,2,1],dtype=cupy.int32)
fromstarts = ctypes.cast(fromstarts.data.ptr,ctypes.POINTER(ctypes.c_int32))
fromstops = cupy.array([3,4,5,3,6,11],dtype=cupy.int32)
fromstops = ctypes.cast(fromstops.data.ptr,ctypes.POINTER(ctypes.c_int32))
length = 3
funcC.argtypes = (ctypes.POINTER(ctypes.c_int64),ctypes.POINTER(ctypes.c_int32),ctypes.c_int64)
ret_pass = funcC(tonumx,fromstops,length)
但是当我打印tonum
-
>>> tonum[:3]
array([0,0])
但值应为-[1,2]
(基于cuda_ListArray_num
的工作原理)
我可能做错了什么?我认为我如何将cupy
指针传递到cuda内核可能是一个错误。
解决方法
您必须将python代码更改为
fromstarts = cupy.array([2,2,1,1],dtype=cupy.int32)
fromstarts_ctypes = ctypes.cast(fromstarts.data.ptr,ctypes.POINTER(ctypes.c_int32))
fromstops = cupy.array([4,4,5,3,6,11],dtype=cupy.int32)
fromstops_ctypes = ctypes.cast(fromstops.data.ptr,ctypes.POINTER(ctypes.c_int32))
length = 3
funcC.argtypes = (ctypes.POINTER(ctypes.c_int64),ctypes.POINTER(ctypes.c_int32),ctypes.c_int64)
ret_pass = funcC(tonumx,fromstarts_ctypes,fromstops_ctypes,length)
原因是CuPy数组是通过RAII管理的,因此,当您将fromstarts
变量重新分配给另一个对象(ctypes指针)时,实际的数组将被销毁,其内存块将返回到CuPy的内存池中。此后,当您创建fromstops
数组时,它将使用相同的内存块,覆盖fromstarts
数组的内容,因为该数组不再存在,并共享相同的指针。>
然后,当您调用c代码时,fromstarts
和fromstops
实际上是相同的指针。您可以使用调试器或仅通过printf进行验证。