TPL数据流管道中的工作单元问题

问题描述

我有一个经典的生产者消费者问题,多个用户可以同时将数据发布到Web API方法(api / test),这会触发耗费大量时间的 IO 异步运行操作。我使用链接ActionBlock的{​​{1}}将并发请求的数量限制为5。

BufferBlock注册为单例,目标是允许所有对api / test的调用都馈入此队列。这意味着诸如完成阻止之类的事情是不可行的。

等待控制器完成启动工作的最有效方法是什么?

Web API控制器:

Producer

生产者/消费者实现:

[Route("api/test")]
[ApiController]
public class TestController : ControllerBase
{
    private Producer producer;

    public TestController(Producer producer)
    {
        this.producer = producer;
    }
    [HttpGet]
    public async Task<string[]> Values()
    {
        for (int i = 1; i <= 10; i++)
        {
            await this.producer.AddAsync(1);
        }

        // i've added my work to the queue,elegant completion required
        return new string[] { "value1","value2" };
    }

}

解决方法

因此,您可以使用许多方法和同步原语来解决此问题,每种方法都有自己的优势,容错能力和根据您的需求的问题。这是带有"""Program to track specific location of turtle (for every step)""" from turtle import * from math import * def cball_graphics(): leonardo = Turtle() leonardo.color("dark blue") leonardo.shape("turtle") leonardo.speed(1) return leonardo def show_position(): pos = Turtle() pos.color("white") pos.goto(30,-50) pos.color("red") return pos class cannon_ball: def __init__(self,angle,vel,height,time): self.x_pos = 0 self.y_pos = height theta = pi * angle / 180 self.x_vel = vel * cos(theta) self.y_vel = vel * sin(theta) self.time = time def update_time(self): self.x_pos += self.time * self.x_vel y_vel1 = self.y_vel - 9.8 * self.time self.y_pos += self.time * (self.y_vel + y_vel1) / 2 self.y_vel = y_vel1 def get_x(self): return self.x_pos def get_y(self): return self.y_pos def variables(): angle = 55 vel = 10 height = 100 time = .01 return cannon_ball(angle,time) def main(): leonardo = cball_graphics() """pos is a variable that writes the position on the screen using x and y pos""" pos = show_position() pos.hideturtle() projectile = variables() while projectile.y_pos >= 0: pos.write(f"{'%0.0f' % projectile.x_pos},{'%0.0f' % projectile.y_pos}") projectile.update_time() leonardo.goto(projectile.x_pos,projectile.y_pos) pos.clear() main()

awaitable 示例

给予

TaskCompletionSource

等待中

您可以轻松地重构它以进行发送并在一个呼叫中等待。

public class Producer
{
   private BufferBlock<int> _queue;
   private ActionBlock<int> _consumer;
   public Action<int,string> OnResult;
   public Producer()
   {
      InitializeChain();
   }
   private void InitializeChain()
   {
      _queue = new BufferBlock<int>(new DataflowBlockOptions { BoundedCapacity = 5 });
      var consumerOptions = new ExecutionDataflowBlockOptions { BoundedCapacity = 5,MaxDegreeOfParallelism = 5 };    
      _consumer = new ActionBlock<int>(SomeIoWorkAsync,consumerOptions);   
      _queue.LinkTo(_consumer,new DataflowLinkOptions { PropagateCompletion = true });
   }

   private async Task SomeIoWorkAsync(int x)
   {
      Console.WriteLine($"{DateTime.Now.TimeOfDay:g} : Processing {x}");
      await Task.Delay(5000);
      OnResult?.Invoke(x,$"SomeResult {x}");
   }

   public Task AddAsync(int data) => _queue.SendAsync(data);
}

用法

public static Task<string> WaitForConsumerAsync(Producer producer,int myId)
{
   var tcs = new TaskCompletionSource<string>();

   producer.OnResult += (id,result) =>
   {
      if(id == myId)
         tcs.TrySetResult(result);
   };

   return tcs.Task;
}

输出

var producer = new Producer();

// to simulate something you are waiting for,and id or what ever
var myId = 7;

// you could send and await in the same method if needed. this is just an example
var task = WaitForConsumerAsync(producer,myId);

// create random work for the bounded capacity to fill up
// run this as a task so we don't hit the back pressure before we await (just for this test)
Task.Run(async () =>
{
   for (int i = 1; i <= 20; i++)
      await producer.AddAsync(i);
});

// wait for your results to pop out
var result = await task;

Console.WriteLine($"{DateTime.Now.TimeOfDay:g} : Got my result {result},now i can finish happily");

// you can happily end here,the pipeline will keep going
Console.ReadKey();

Full Demo Here

注意:您可能需要使用该示例,这样它才不会超时

一次完成所有操作的示例

12:04:41.62464 : Processing 3
12:04:41.6246489 : Processing 1
12:04:41.6246682 : Processing 2
12:04:41.624641 : Processing 4
12:04:41.624661 : Processing 5
12:04:41.8530723 : Processing 7
12:04:41.8530791 : Processing 8
12:04:41.8531427 : Processing 10
12:04:41.8530716 : Processing 6
12:04:41.8530967 : Processing 9
12:04:42.0531947 : Got my result SomeResult 7,now i can finish happily
12:04:42.0532178 : Processing 11
12:04:42.0532453 : Processing 12
12:04:42.0532721 : Processing 14
12:04:42.0532533 : Processing 13
12:04:42.2674406 : Processing 15
12:04:42.2709914 : Processing 16
12:04:42.2713017 : Processing 18
12:04:42.2710417 : Processing 17
12:04:42.4689852 : Processing 19
12:04:42.4721405 : Processing 20

附加说明

这实际上只是public async Task<string> AddAsync(int data) { await _queue.SendAsync(data); return await WaitForConsumerAsync(data); } public Task<string> WaitForConsumerAsync(int data) { var tcs = new TaskCompletionSource<string>(); OnResult += (id,result) => { if (id == data) tcs.TrySetResult(result); }; return tcs.Task; } 事件的一个学术示例。我假设您的管道比给定的示例还要复杂,并且您正在执行 CPU和IO绑定的工作负载,此外,在此示例中您实际上需要awaitable,这是多余的。 / p>

  1. 如果您正在等待纯粹的 IO工作负载,则最好等待它们,不需要管道。
  2. 在您提供的信息中,除非您有某种内存限制,否则实际上不需要使用BufferBlock产生背压。
  3. 您需要注意BoundedCapacity和默认的BoundedCapacity。使用EnsureOrdered = true,管道将更加有效。作业完成后会弹出,并且背压不会受到结果排序的影响,这意味着项目可能会更快地通过管道进行处理
  4. 您还可以使用其他框架,例如RX,这可能会使所有这些框架更加优雅和流畅。
  5. 通过将EnsureOrdered = false设置为线性块,还可以提高效率