如何使用预训练模型进行双输入转移学习

问题描述

我将使用预先训练的模型(先前使用save_best_only的{​​{1}}参数进行保存)来进行双输入转移学习。我有以下内容

ModelCheckpoint 

当我尝试使用:

pretrained_model = load_model('best_weight.h5')

def combined_net(): 
    
    u_model = pretrained_model
    u_output = u_model.layers[-1].output
    
    v_model = pretrained_model
    v_output = v_model.layers[-1].output


    concat = concatenate([u_output,v_output])
    #hidden1 = Dense(64,activation=activation)(concat) #was 128
    main_output = Dense(1,activation='sigmoid',name='main_output')(concat) # pretrained_model.get_layer("input_1").input

    model = Model(inputs=[u_model.input,v_model.input],outputs=main_output)
    opt = SGD(lr=0.001,nesterov=True)
    model.compile(loss='binary_crossentropy',optimizer=opt,metrics=['accuracy'])
    return model

我遇到以下错误

best_weights_file="weights_best_of_pretrained_dual.hdf5" checkpoint = ModelCheckpoint(best_weights_file,monitor='val_acc',verbose=1,save_best_only=True,mode='max') callbacks = [checkpoint] base_model = combined_net() print(base_model.summary) history = base_model.fit([x_train_u,x_train_v],y_train,batch_size=batch_size,epochs=epochs,callbacks=callbacks,validation_data=([x_test_u,x_test_v],y_test),shuffle=True)

显然,ValueError: The list of inputs passed to the model is redundant. All inputs should only appear once. Found: [<tf.Tensor 'input_1_5:0' shape=(None,None,3) dtype=float32>,<tf.Tensor 'input_1_5:0' shape=(None,3) dtype=float32>]行似乎引起了错误

要做的就是对双输入到单输出模型使用预训练的模型(“ best_weight.h5”)。这两个输入都与先前初始化的相同,并且model = Model(inputs=[u_model.input,outputs=main_output)层应将由加载的模型构造的每个模型的最后一层之前的层连接起来。

我尝试了几种在线查找方法,但是无法正确设置模型。

我希望有人能帮助我

编辑:

预训练模型如下所示:

concatenate

解决方法

这里是正确的方法。当我定义combined_net时,我定义了2个新输入,用于以相同方式提供pre_trained模型

def vgg_16():
    
    b_model = tf.keras.applications.VGG16(weights='imagenet',include_top=False)
    x = b_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dense(256,activation='relu')(x)
    predictions = Dense(1,activation='sigmoid')(x)
    model = Model(inputs=b_model.input,outputs=predictions)
    
    for layer in model.layers[:15]:
        layer.trainable = False
        
    opt = SGD(lr=0.003,nesterov=True)
    model.compile(loss='binary_crossentropy',optimizer=opt,metrics=['accuracy'])
    
    return model

main_model = vgg_16()
# main_model.fit(...)

pretrained_model = Model(main_model.input,main_model.layers[-2].output)

def combined_net(): 
    
    inp_u = Input((224,224,3)) # the same input dim of pretrained_model
    inp_v = Input((224,3)) # the same input dim of pretrained_model
    
    u_output = pretrained_model(inp_u)
    v_output = pretrained_model(inp_v)


    concat = concatenate([u_output,v_output])
    main_output = Dense(1,activation='sigmoid',name='main_output')(concat)

    model = Model(inputs=[inp_u,inp_v],outputs=main_output)
    opt = SGD(lr=0.001,metrics=['accuracy'])
    return model

base_model = combined_net()
base_model.summary()