tf.compat.v1.train.exponential_decay:全局步= 0

问题描述

要了解如何同时实现具有指数衰减的ANN和具有恒定学习率的ANN,我在这里进行了查找:https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/exponential_decay

我有一些问题:

...
global_step = tf.Variable(0,trainable=False)
starter_learning_rate = 0.1
learning_rate = tf.compat.v1.train.exponential_decay(starter_learning_rate,global_step,100000,0.96,staircase=True)
# Passing global_step to minimize() will increment it at each step.
learning_step = (
    tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
    .minimize(...my loss...,global_step=global_step)
)

当将global_step设置为等于值0的变量时,这并不意味着我们将不会衰减,因为

decayed_learning_rate = learning_rate *
                        decay_rate ^ (global_step / decay_steps)

因此,如果global_step= 0跟在decayed_learning_rate = learning_rate后面,这是对的还是我在这里犯错了?

此外,对于100,000个步骤的确切含义,我有些困惑。第一步到底是什么?是不是每次输入都已通过网络完全馈入并反向传播?

解决方法

我希望这个例子能消除您的疑问。

epochs = 10
global_step = tf.Variable(0,trainable=False,dtype= tf.int32)
starter_learning_rate = 1.0

for epoch in range(epochs):
    print("Starting Epoch {}/{}".format(epoch+1,epochs))
    for step,(x_batch_train,y_batch_train) in enumerate(train_dataset):
        
        with tf.GradientTape() as tape:
            logits = model(x_batch_train,training=True)
            loss_value = loss_fn(y_batch_train,logits)
            
        grads = tape.gradient(loss_value,model.trainable_weights)
        
        learning_rate = tf.compat.v1.train.exponential_decay(
                    starter_learning_rate,global_step,100000,0.96
        )
        
        
        optimizer(learning_rate=learning_rate).apply_gradients(zip(grads,model.trainable_weights))
        print("Global Step: {}  Learning Rate: {}  Examples Processed: {}".format(global_step.numpy(),learning_rate(),(step + 1) * 100))
        global_step.assign_add(1)

输出:

Starting Epoch 1/10
Global Step: 0  Learning Rate: 1.0  Examples Processed: 100
Global Step: 1  Learning Rate: 0.9999996423721313  Examples Processed: 200
Global Step: 2  Learning Rate: 0.9999992251396179  Examples Processed: 300
Global Step: 3  Learning Rate: 0.9999988079071045  Examples Processed: 400
Global Step: 4  Learning Rate: 0.9999983906745911  Examples Processed: 500
Global Step: 5  Learning Rate: 0.9999979734420776  Examples Processed: 600
Global Step: 6  Learning Rate: 0.9999975562095642  Examples Processed: 700
Global Step: 7  Learning Rate: 0.9999971389770508  Examples Processed: 800
Global Step: 8  Learning Rate: 0.9999967217445374  Examples Processed: 900
Global Step: 9  Learning Rate: 0.9999963045120239  Examples Processed: 1000
Global Step: 10  Learning Rate: 0.9999958872795105  Examples Processed: 1100
Global Step: 11  Learning Rate: 0.9999954700469971  Examples Processed: 1200
Starting Epoch 2/10
Global Step: 12  Learning Rate: 0.9999950528144836  Examples Processed: 100
Global Step: 13  Learning Rate: 0.9999946355819702  Examples Processed: 200
Global Step: 14  Learning Rate: 0.9999942183494568  Examples Processed: 300
Global Step: 15  Learning Rate: 0.9999938607215881  Examples Processed: 400
Global Step: 16  Learning Rate: 0.9999934434890747  Examples Processed: 500
Global Step: 17  Learning Rate: 0.999993085861206  Examples Processed: 600
Global Step: 18  Learning Rate: 0.9999926686286926  Examples Processed: 700
Global Step: 19  Learning Rate: 0.9999922513961792  Examples Processed: 800
Global Step: 20  Learning Rate: 0.9999918341636658  Examples Processed: 900
Global Step: 21  Learning Rate: 0.9999914169311523  Examples Processed: 1000
Global Step: 22  Learning Rate: 0.9999909996986389  Examples Processed: 1100
Global Step: 23  Learning Rate: 0.9999905824661255  Examples Processed: 1200

现在,如果将“全局”步骤保持为0,即从上述代码中删除增量操作。 输出:

开始时代1/10

Global Step: 0  Learning Rate: 1.0  Examples Processed: 100
Global Step: 0  Learning Rate: 1.0  Examples Processed: 200
Global Step: 0  Learning Rate: 1.0  Examples Processed: 300
Global Step: 0  Learning Rate: 1.0  Examples Processed: 400
Global Step: 0  Learning Rate: 1.0  Examples Processed: 500
Global Step: 0  Learning Rate: 1.0  Examples Processed: 600
Global Step: 0  Learning Rate: 1.0  Examples Processed: 700
Global Step: 0  Learning Rate: 1.0  Examples Processed: 800
Global Step: 0  Learning Rate: 1.0  Examples Processed: 900
Global Step: 0  Learning Rate: 1.0  Examples Processed: 1000
Global Step: 0  Learning Rate: 1.0  Examples Processed: 1100
Global Step: 0  Learning Rate: 1.0  Examples Processed: 1200
Starting Epoch 2/10
Global Step: 0  Learning Rate: 1.0  Examples Processed: 100
Global Step: 0  Learning Rate: 1.0  Examples Processed: 200
Global Step: 0  Learning Rate: 1.0  Examples Processed: 300
Global Step: 0  Learning Rate: 1.0  Examples Processed: 400
Global Step: 0  Learning Rate: 1.0  Examples Processed: 500
Global Step: 0  Learning Rate: 1.0  Examples Processed: 600
Global Step: 0  Learning Rate: 1.0  Examples Processed: 700
Global Step: 0  Learning Rate: 1.0  Examples Processed: 800
Global Step: 0  Learning Rate: 1.0  Examples Processed: 900
Global Step: 0  Learning Rate: 1.0  Examples Processed: 1000
Global Step: 0  Learning Rate: 1.0  Examples Processed: 1100
Global Step: 0  Learning Rate: 1.0  Examples Processed: 1200

建议-代替使用 tf.compat.v1.train.exponential_decay ,而使用 tf.keras.optimizers.schedules.ExponentialDecay 。 这就是最简单的示例。

def create_model1():
    initial_learning_rate = 0.01
    lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate,decay_steps=100000,decay_rate=0.96,staircase=True)
    model = tf.keras.Sequential()
    model.add(tf.keras.Input(shape=(5,)))
    model.add(tf.keras.layers.Dense(units = 6,activation='relu',name = 'd1'))
    model.add(tf.keras.layers.Dense(units = 2,activation='softmax',name = 'O2'))
    
    model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule),loss='sparse_categorical_crossentropy',metrics=['accuracy'])
    
    return model


model = create_model1()
model.fit(x,y,batch_size = 100,epochs = 100)

您还可以使用tf.keras.callbacks.LearningRateScheduler之类的Callback来实现衰减。