使用OpenCV识别前色和背景色

问题描述

Sample screenshot

我对Python和OpenCV很陌生。我有一些屏幕截图(附有一个示例供参考),我想为其识别文本的前色和背景色。我将使用这种颜色来计算文本的颜色对比度。使用PyTesseract,我能够识别单词和文本的绘制边界矩形。谁能指导我如何检测文本的前色和底色?下面是我到目前为止所做的代码

import cv2
import PyTesseract
import numpy as np


PyTesseract.PyTesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe'

imgOriginal = cv2.imread('3.png')

gray = cv2.cvtColor(imgOriginal,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray,255,cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
img = cv2.GaussianBlur(thresh,(3,3),0)
cv2.imshow("Filtered",img)

### Detecting words
hImg,wImg,_ = imgOriginal.shape
Boxes = PyTesseract.image_to_data(img,config='--psm 6') #list
for i,b in enumerate(Boxes.splitlines()):
    if i!=0: #no need to extract the first row since it is the header
        b=b.split()
        if len(b)==12: #12th item is the word
            x,y,w,h = int(b[6]),int(b[7]),int(b[8]),int(b[9])
            cv2.rectangle(imgOriginal,(x,y),(x+w,y+h),(0,255),1)
            
            
cv2.imshow('Image',imgOriginal)

k = cv2.waitKey(0)
if k==ord('q'):
    cv2.destroyAllWindows()

解决方法

如果您仍在寻找答案。

imgOriginal = cv2.imread('windows.png')
image = imgOriginal.copy()
image_1 = imgOriginal.copy()
gray = cv2.cvtColor(imgOriginal,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray,255,cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

# Removing the horizantal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(7,1))
detected_lines = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,horizontal_kernel,iterations=2)
cnts = cv2.findContours(detected_lines,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(image,[c],-1,(255,255),2)

# Removing the vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1,7))
detected_lines = cv2.morphologyEx(thresh,vertical_kernel,2)

gray_no_lines = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
otsu = cv2.threshold(gray_no_lines,cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

### Detecting words
boxes = pytesseract.image_to_data(otsu,config='--psm 6') #list

xs = []
ys = []
ws = []
hs = []
words = []
for i,b in enumerate(boxes.splitlines()):
    if i!=0: #no need to extract the first row since it is the header
        b=b.split()
        if len(b)==12: #12th item is the word
            if b[11] != -1:
                x,y,w,h = int(b[6]),int(b[7]),int(b[8]),int(b[9])
                cv2.rectangle(image,(x,y),(x+w,y+h),(0,1)
                xs.append(x)
                ys.append(y)
                ws.append(w)
                hs.append(h)
                words.append(b[11])
text_colors = []
bg_colors = []
for j in range(len(words)):
    x,h = xs[j],ys[j],ws[j],hs[j]
    roi_otsu = otsu[y:y+h,x:x+w]
    roi_image = image_1[y:y+h,x:x+w]
        
    black_coords = np.column_stack(np.where(roi_otsu == 0))
    white_coords = np.column_stack(np.where(roi_otsu == 255))
    
    blues_text = []
    greens_text = []
    reds_text = []
    blues_bg = []
    greens_bg = []
    reds_bg = []

    for i in range(len(black_coords)):
        blue_t = roi_image.item(black_coords[i][0],black_coords[i][1],0)
        green_t = roi_image.item(black_coords[i][0],1)
        red_t = roi_image.item(black_coords[i][0],2)
        blues_text.append(blue_t)
        greens_text.append(green_t)
        reds_text.append(red_t)
        
    color_t = (int(np.mean(blues_text)),int(np.mean(greens_text)),int(np.mean(reds_text)))
    for i in range(len(white_coords)):
        blue_bg = roi_image.item(white_coords[i][0],white_coords[i][1],0)
        green_bg = roi_image.item(white_coords[i][0],1)
        red_bg = roi_image.item(white_coords[i][0],2)
        blues_bg.append(blue_bg)
        greens_bg.append(green_bg)
        reds_bg.append(red_bg)
        
    color_bg = (int(np.mean(blues_bg)),int(np.mean(greens_bg)),int(np.mean(reds_bg)))

    text_colors.append(color_t)
    bg_colors.append(color_bg)

print(text_colors)
print(bg_colors)

# print(len(text_colors),len(bg_colors))

为了更好的效果,我删除了水平线和垂直线。对图像进行二值化并收集每个文本区域的坐标。对感兴趣的区域进行切片,并收集由文本和背景组成的像素像素(来自二值化后的切片区域)。从彩色切片区域收集了这些坐标的像素值。取每种颜色的平均值,然后将颜色附加到最终列表中。

希望这可以解决您的问题。如果我错了,请纠正我。