我们如何在Elastic Search中的文字类型列上汇总SUM?

问题描述

我一直在尝试将聚合函数应用于例如:文本类型总和,我的索引映射如下:

 

    {
    "my_elastic_search_index" : {
        "mappings" : {
        "properties" : {
            "@timestamp" : {
            "type" : "date"
            },"@version" : {
            "type" : "text","fields" : {
                "keyword" : {
                "type" : "keyword","ignore_above" : 256
                }
            }
            },"doc" : {
            "properties" : {
                "_id" : {
                "type" : "text","fields" : {
                    "keyword" : {
                    "type" : "keyword","ignore_above" : 256
                    }
                }
                },"last_updated_on" : {
                "type" : "long"
                },"sample_ids" : {
                "type" : "nested","properties" : {
                    "name" : {
                    "type" : "text","fields" : {
                        "keyword" : {
                        "type" : "keyword","ignore_above" : 256
                        }
                    }
                    },"value" : {
                    "type" : "text","ignore_above" : 256
                        }
                    }
                    }
                }
                },"status" : {
                "type" : "text","filter_id" : {
                "type" : "text","ignore_above" : 256
                    }
                }
                }
            }
            },"query" : {
            "properties" : {
                "match" : {
                "properties" : {
                    "doc" : {
                    "properties" : {
                        "filter_id" : {
                        "type" : "text","fields" : {
                            "keyword" : {
                            "type" : "keyword","ignore_above" : 256
                            }
                        }
                        }
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }

我的数据是:


    {
    "took" : 23,"timed_out" : false,"_shards" : {
        "total" : 1,"successful" : 1,"skipped" : 0,"Failed" : 0
    },"hits" : {
        "total" : {
        "value" : 4,"relation" : "eq"
        },"max_score" : 1.0,"hits" : [
        {
            "_index" : "my_elastic_search_index","_type" : "_doc","_id" : "zzz-yyy-xxx-a9e8","_score" : 1.0,"_source" : {
            "@version" : "1","@timestamp" : "2019-11-14T14:30:56.261Z","doc" : {
                "status" : "SENT","sample_ids" : [
                {
                    "value" : """"20"""","name" : "8f4abde123d"
                },{
                    "value" : """"25.52"""","name" : "d92c4732bc9fb91"
                },{
                    "value" : """"0"""","name" : "4b91bdee68b6e"
                },{
                    "value" : """"xyz"""","name" : "bd0a944a292d5a"
                },{
                    "value" : """"someothervlue"""","name" : "8ee9932060d5bf"
                },{
                    "value" : """"30..01"""","name" : "229eed093fa0d85"
                },],"filter_id" : "a1357913-cf99650f51d","_id" : "zzz-yyy-xxx-a9e81",}
            }
        },{
            "_index" : "my_elastic_search_index","_id" : "zzz-yyy-xxx-a9e82","@timestamp" : "2019-11-14T14:30:56.731Z","sample_ids" : [
                {
                    "value" : """"40"""","name" : "d92c47372bc9fb91"
                },"name" : "4b91bdc6ee68b6e"
                },"name" : "bccf07c19cfe12c"
                }
                ],"_id" : "zzz-yyy-xxx-a9e84",},}
        },"_id" : "zzz-yyy-xxx-a9e85","@timestamp" : "2019-11-14T08:23:36.998Z","sample_ids" : [
                {
                    "value" : """"17.8"""",{
                    "value" : """"35.6"""","name" : "d92c473132bc9fb91"
                },"name" : "4b91bd5c6ee68b6e"
                },"name" : "bd0a944c2a292d5a"
                },"name" : "8ee9934dce9e2060d5bf"
                },"name" : "229eed48xsscd3fa0d85"
                },{
                    "value" : """"30"""","name" : "4381f1bddffc4265129"
                },"name" : "94cafdd1c78fc355b00"
                },{
                    "value" : """"HVDC"""","name" : "bccf024ac19cfe12c"
                }
                ],"_id" : "zzz-yyy-xxx-a9e87","@timestamp" : "2019-11-14T08:24:01.272Z","doc" : {
                "sample_ids" : [
                {
                    "value" : """"11.08"""","name" : "d92c4737a132bc9fb91"
                },"name" : "4b91bd5028c6ee68b6e"
                },"name" : "bd0a9445e19c2a292d5a"
                },"name" : "8ee9934dd002060d5bf"
                },"name" : "229eed48e2093fa0d85"
                }
                ],}
            }
        }
        ]
    }
    }

我想将doc.sample_ids.value的总和返回为88.88,其中doc.sample_ids.name = 8f4abde123d和filter_id = a1357913-cf99650f51d,已经尝试将doc.sample_ids.name转换为Number,这给了我错误。 无论如何,我可以得到sum,avg和count。

    GET /my_elastic_search_index/_search
    {
        "query": {
        "bool": {
        "must": [
            {
            "terms": {
                "doc.filter_id.keyword": [
                "a1357913-cf99650f51d"
                ]
            }
            }
        ]
        }
    },"aggs": { 
        "sum_values" : { "sum" : { "script" : { 
        "lang":"painless","inline" : "Double.parseDouble(doc['sample_ids.value'])" } } } }
        }

解决方法

您使用嵌套字段,因此必须使用嵌套聚合:

尝试这样的聚合:

{
  "aggs": {
    "resellers": {
      "nested": {
        "path": "doc.sample_ids"
      },"aggs": {
        "sum_values": {
          "sum": {
            "script": {
              "lang": "painless","source": "Float.parseFloat(doc['doc.sample_ids.value.keyword'].value)"
            }
          }
        }
      }
    }
  }
}

使用类似这样的数据:“”“” 35.6“”“” 首先,您应该清除数据。 这是无效的格式,因此不应库存。 您可以通过重新索引数据或使用loigstash或使用查询更新来做到这一点。

但是,如果您确实无法解决此问题,则必须在elasticsearch.yml中启用正则表达式功能。
添加此行:

script.painless.regex.enabled: true

然后您将可以执行以下操作:

"aggs": {
    "sum_values": {
      "sum": {
        "script": {
          "lang": "painless","source": """
          String content = /[\"]/.matcher(doc['doc.sample_ids.value.keyword'].value).replaceAll('');
          Double.parseDouble(content);
          """
        }
      }
    }
  }

请谨慎使用此查询,性能会很糟糕。 您应该真正解决摄取问题,并清理数据。