如何在Python中从memoryview读取多种数据类型?

问题描述

我正在读取传感器数据,该数据有6列,前四个是32位浮点数,后两个是无符号整数。这是将其转换为numpy数组的方式:

data = np.frombuffer(sensor_data.raw_data,dtype=np.dtype('float32')).reshape([-1,6])
data = data[:,:5]

int_data = np.frombuffer(sensor_data.raw_data,dtype=np.dtype('uint')).reshape([-1,6])
int_data = int_data[:,4:6]

这似乎不是最有效的方法。有没有办法读取多种数据类型或将float32中的最后两列转换为字节然后转换为uint

解决方法

如果您的2个加载正常工作,则无符号整数必须为32位。

我们可以构造一个具有复合dtype的等效结构化数组:

In [58]: dt = np.dtype([('f0','f4',4),('f1','uint32',2)])                       
In [59]: arr = np.zeros(5,dt)                                                  
In [60]: arr['f0'] = np.random.rand(5,4)                                        
In [61]: arr['f1'] = np.random.randint(0,100,(5,2))                             
In [62]: arr                                                                    
Out[62]: 
array([([0.38565257,0.36662674,0.5530039,0.17866635],[39,3]),([0.12109676,0.60092086,0.6555444,0.06968965],[18,96]),([0.7082187,0.48962796,0.4019332,0.19190358],[26,81]),([0.34053752,0.35870123,0.22802468,0.33509415],[48,52]),([0.45730132,0.38697603,0.18952931,0.90458447],[ 3,40])],dtype=[('f0','<f4',(4,)),'<u4',(2,))])

并创建一个数据缓冲区:

In [63]: astr = arr.tobytes()                                                   

您的负载使用该缓冲区:

In [64]: data = np.frombuffer(astr,'float32').reshape(-1,6)                    
In [65]: data[:,:4]                                                             
Out[65]: 
array([[0.38565257,[0.12109676,[0.7082187,[0.34053752,[0.45730132,0.90458447]],dtype=float32)
In [66]: data = np.frombuffer(astr,'uint32').reshape(-1,6)                     
In [67]: data[:,4:]                                                             
Out[67]: 
array([[39,3],96],81],52],40]],dtype=uint32)

但是我们也可以使用compound dtype加载它:

In [68]: data = np.frombuffer(astr,dt)                                         
In [69]: data['f0']                                                             
Out[69]: 
array([[0.38565257,dtype=float32)
In [70]: data['f1']                                                             
Out[70]: 
array([[39,dtype=uint32)
       

该复合dtype也可以与'uint64'一起使用。

我们还可以使用uint32float32加载中获取view

In [84]: data = np.frombuffer(astr,6)                    
In [86]: data[:,4:].view('uint32')                                              
Out[86]: 
array([[39,dtype=uint32)

(或带有视图的uint浮标)