问题描述
使用python中的yahoo财务软件包,我能够下载相关数据以显示OCHL。我的目标是找出一天中的哪个时间是平均水平最高的股票。
以下是下载数据的代码:
import yfinance as yf
import pandas as pd
df = yf.download(
tickers = "APPL",period = "60d",interval = "5m",auto_adjust = True,group_by = 'ticker',prepost = True,)
maxTimes = df.groupby([df.index.month,df.index.day,df.index.day_name()])['High'].idxmax()
这给了我类似的东西:
Datetime Datetime Datetime
6 2 Tuesday 2020-06-02 19:45:00-04:00
3 Wednesday 2020-06-03 15:50:00-04:00
4 Thursday 2020-06-04 10:30:00-04:00
5 Friday 2020-06-05 11:30:00-04:00
...
8 3 Monday 2020-08-03 14:40:00-04:00
4 Tuesday 2020-08-04 18:10:00-04:00
5 Wednesday 2020-08-05 11:10:00-04:00
6 Thursday 2020-08-06 16:20:00-04:00
7 Friday 2020-08-07 15:50:00-04:00
Name: High,dtype: datetime64[ns,America/New_York]
我认为我创建的maxTimes对象应该给我每天发生一天中最高时段的时间,但是我需要的是:
Monday 12:00
Tuesday 13:25
Wednesday 09:35
Thurs 16:10
Fri 12:05
有人能帮助我确定如何使我的数据看起来像这样吗?
解决方法
这应该有效:
import yfinance as yf
import pandas as pd
df = yf.download(
tickers = "AAPL",period = "60d",interval = "5m",auto_adjust = True,group_by = 'ticker',prepost = True,)
maxTimes = df.groupby([df.index.month,df.index.day,df.index.day_name()])['High'].idxmax()
# Drop date
maxTimes = maxTimes.apply(lambda x: x.time())
# Drop unused sub-indexes
maxTimes = maxTimes.droplevel(level=[0,1])
# To seconds
maxTimes = maxTimes.apply(lambda t: (t.hour * 60 + t.minute) * 60 + t.second)
# Get average
maxTimes = maxTimes.groupby(maxTimes.index).mean()
# Back to time
maxTimes = pd.to_datetime(maxTimes,unit='s').apply(lambda x: x.time())
print (maxTimes)
'''
Output:
Datetime
Friday 11:59:32.727272
Monday 14:15:00
Thursday 13:21:40
Tuesday 10:35:00
Wednesday 11:53:45
Name: High,dtype: object
'''