Python Pandas:根据条件从多个数据帧访问数据

问题描述

我必须计算一个指标,该指标要求我从多个列中查找同一“用户”的属性。例如,我有两个数据框,如下所示:

calls_per_month.head(10)
    user_id month   call_date
0   1000    12  16
1   1001    8   27
2   1001    9   49
3   1001    10  65
4   1001    11  64
5   1001    12  56
6   1002    10  11
7   1002    11  55
8   1002    12  47
9   1003    12  149

internet_per_month.head(10)

 user_id session_date mb_used
0   1000    12  2000.0
1   1001    8   7000.0
2   1001    9   14000.0
3   1001    10  23000.0
4   1001    11  19000.0
5   1001    12  20000.0
6   1002    10  7000.0
7   1002    11  20000.0
8   1002    12  15000.0
9   1003    12  28000.0

我想计算一个指标,对于每个使用互联网或打过电话的用户,每个月的user_id如下所示: `usage = mb_used + call_date' 这将是一列,看起来像(我已经完成了手工计算):

 user_id month usage
0   1000    12  2016
1   1001    8   7027
2   1001    9   14049
3   1001    10  23065
4   1001    11  19064
5   1001    12  20056
6   1002    10  7011
7   1002    11  20055
8   1002    12  15047
9   1003    12  28149

我在上面显示标题标题没有显示,但是有些用户在特定月份没有拨打电话,但是使用了数据,因此我必须考虑到这一点,在某种意义上,它不应忽略那些用户,然后为不可用的数据添加0。

我应该首先对表进行外部联接吗?还是创建新表不是正确的方法?任何指导表示赞赏。

谢谢

解决方法

您应该先合并或加入这些对象,然后再进行操作。在这里,我正在left join上进行internet_per_month(以及对fillna的调用);如果可能有人打电话而不是互联网,则最好使用外部加入。

df = pd.merge(
    left=internet_per_month,right=calls_per_month,how="left",left_on=["user_id","session_date"],right_on=["user_id","month"],)

df.fillna(0)
df["usage"] = df["mb_used"] + df["call_date"]

输出:

   user_id  month  call_date  session_date  mb_used    usage
0     1000     12         16            12   2000.0   2016.0
1     1001      8         27             8   7000.0   7027.0
2     1001      9         49             9  14000.0  14049.0
3     1001     10         65            10  23000.0  23065.0
4     1001     11         64            11  19000.0  19064.0
5     1001     12         56            12  20000.0  20056.0
6     1002     10         11            10   7000.0   7011.0
7     1002     11         55            11  20000.0  20055.0
8     1002     12         47            12  15000.0  15047.0
9     1003     12        149            12  28000.0  28149.0