问题描述
我的代码如下:
batch_size=8
sequence_length=25
vocab_size=100
import tensorflow as tf
from transformers import T5Config,TFT5ForConditionalGeneration
configT5 = T5Config(
vocab_size=vocab_size,d_ff =512,)
model = TFT5ForConditionalGeneration(configT5)
model.compile(
optimizer = tf.keras.optimizers.Adam(),loss = tf.keras.losses.SparseCategoricalCrossentropy()
)
input = tf.random.uniform([batch_size,sequence_length],vocab_size,dtype=tf.int32)
labels = tf.random.uniform([batch_size,dtype=tf.int32)
input = {'inputs': input,'decoder_input_ids': input}
model.fit(input,labels)
logit和标签的第一维必须相同,并且具有logits形状 [1600,64]和标签形状[200] [[node sparse_categorical_crossentropy_3 / SparsesoftmaxCrossEntropyWithLogits / SparsesoftmaxCrossEntropyWithLogits (在C:\ Users \ FA.PROJECTOR-MSK \ GoogleДиск\ Colab中定义 Notebooks \ PoetryTransformer \ experiments \ TFT5.py:30)]] [Op:__ inference_train_function_25173]函数调用堆栈: train_function
我不明白-为什么模型返回张量[1600,64]。根据{{3}}模型返回[batch_size,sequence_len,vocab_size]。
解决方法
由于TFT5ForConditionalGeneration的Sub Main()
Dim xDoc As XmlDocument
Dim result As XmlNodeList
xDoc = New XmlDocument
xDoc.Load("test.xml")
result = xDoc.SelectNodes("/config/entry/content/Issue/id")
Print(result.Count)
End Sub
方法的非标准签名,因此无法调用fit()
。我必须重写call()
才能使TFT5正常工作。看到这里-https://colab.research.google.com/github/snapthat/TF-T5-text-to-text/blob/master/snapthatT5/notebooks/TF-T5-Datasets%20Training.ipynb#scrollTo=cgxRVn34Z0wb