使用数据优化熊猫中的步进功能

问题描述

我有两个数据框(df_1和df_2)和一些变量(A,B,C):

df_1 = pd.DataFrame({'O' : [1,2,3],'M' : [2,8,3]})
df_2 = pd.DataFrame({'O' : [1,1,3,'M' : [9,4,6,7,5,4],'X' : [2,9],'Y' : [3,7],'Z' : [2,1]})

下面我有一种算法,该算法使用A,B,C为df_2中的每一行计算得分(S)。它在df_2中找到得分最高(S)的行。它将df_2和df_1中得分最高的行进行比较,并计算出p_hat(衡量它们之间的相似性):

M_G = df_1.M
df_1 = df_1.set_index('O')
        
A = 1
B = 1
C = 1
 
# score
df_2['S'] = df_2['X']*A + df_2['Y']*B + df_2['Z']*C
        
# Top score
df_Sort = df_2.sort_values(['S','X','M'],ascending=[False,True,True])
df_O    = df_Sort.set_index('O')
M_Top   = df_O[~df_O.index.duplicated(keep='first')].M
M_Top   = M_Top.sort_index()
        
# Compare the top scoring row for each O to df_1
df_1_M = df_1.M
df_1_M = df_1_M.sort_index()
df_1_R = df_1_M.reindex(M_Top.index)
T_N_T  = M_Top == df_1_R

# Record the results for the given values of A,B,C
df_Res = pd.DataFrame({'it_is':T_N_T}) # is this row of df_1 the same as this row of M_Top?
        
# p_hat =         TP / (TP + FP)
p_hat = df_Res.sum() / len(df_Res.index)

对于示例中的A,B,C值,其p_hat = 0.333。我想找到给出p_hat的最大可能值的A,B,C值。我想使用优化算法来确保获得最大值。

该图适用于C = 2:

enter image description here

我如何找到最大的p_hat?

解决方法

我想您可以使用Optuna软件包,它非常易于使用。您定义一个目标函数,在该目标函数中以所需的方式计算要优化的变量,并为其创建一个study对象,然后Optuna基本上完成其余的工作。

简单的2D功能的小示例:

import optuna

def optimize_me(trial):
    x = trial.suggest_uniform('x',-10,10)
    y = trial.suggest_uniform('y',10)
    return ((y - 1) ** 2) + ((x + 2) ** 2)

study = optuna.create_study()
study.optimize(optimize_me,n_trials = 10)

您可以了解有关Optuna here

的更多信息

我主要用它来优化RNN的超级参数,这是一个非常强大的软件包。

,

我找到了一种使用全局蛮力优化的方法:

from scipy.optimize import brute

df_1 = pd.DataFrame({'O' : [1,2,3],'M' : [2,8,3]})

df_2 = pd.DataFrame({'O' : [1,1,3,'M' : [9,4,6,7,5,4],'X' : [2,9],'Y' : [3,7],'Z' : [2,1]})



# Range
min_ = -2
max_ = 2
step = .5
ran_ge = slice(min_,max_+step,step)
ranges = (ran_ge,ran_ge,ran_ge)

# Params
params = (df_1,df_2)

# Index
df_1 = df_1.set_index('O')
df_1_M = df_1.M
df_1_M = df_1_M.sort_index()

# Fun
def fun(z,*params):
    A,B,C = z
        
    # Score
    df_2['S'] = df_2['X']*A + df_2['Y']*B + df_2['Z']*C
    
    # Top score
    df_Sort = df_2.sort_values(['S','X','M'],ascending=[False,True,True])
    df_O    = df_Sort.set_index('O')
    M_Top   = df_O[~df_O.index.duplicated(keep='first')].M
    M_Top   = M_Top.sort_index()
        
    # Compare the top scoring row for each O to df_1
    df_1_R = df_1_M.reindex(M_Top.index) # Nan
    T_N_T  = M_Top == df_1_R

    # Record the results for the given values of A,C
    df_Res = pd.DataFrame({'it_is':T_N_T}) # is this row of df_1 the same as this row of M_Top?
        
    # p_hat =         TP / (TP + FP)
    p_hat = df_Res.sum() / len(df_Res.index)
    
    return -p_hat

# Brute
resbrute = brute(fun,ranges,args=params,full_output=True,finish=None)

print('Global maximum ',resbrute[0])
print('Function value at global maximum ',-resbrute[1])

它给出:

Global maximum  [-2.   0.5  1.5]
Function value at global maximum  0.6666666666666666
,

或使用全局,渐进式优化:(代码由@Aviv Yaniv固定)

from scipy.optimize import differential_evolution

df_1 = pd.DataFrame({'O' : [1,1]})

# Index
df_1 = df_1.set_index('O')
df_1_M = df_1.M
df_1_M = df_1_M.sort_index()

# Fun
def fun(z,C
    df_Res = pd.DataFrame({'it_is':T_N_T}) # is this row of df_1 the same as this row of M_Top?
        
    # p_hat =         TP / (TP + FP)
    p_hat = df_Res.sum() / len(df_Res.index)
    
    print(z)
    return -p_hat[0]

# Bounds
min_ = -2
max_ = 2
ran_ge = (min_,max_)
bounds = [ran_ge,ran_ge]

# Params
params = (df_1,df_2)

# DE
DE = differential_evolution(fun,bounds,args=params)

print('Function value at global maximum ',-DE.fun)