如何使用datagenerator在数据框列中按其路径加载图像以进行双输入

问题描述

由于图像数量过多,我发生了内存错误,当我直接从数据帧中给定路径加载所有图像时会发生这种情况。

dataframe(df_train_data)的训练集格式如下:

class_id    ID      uu         vv
Abnormal    1001    1001_05.png 1001_06.png
Abnormal    1002    1002_05.png 1002_06.png
Abnormal    1003    1003_05.png 1003_06.png
normal  1554    1554_05.png 1554_06.png
normal  1555    1555_05.png 1555_06.png
normal  1556    1556_05.png 1556_06.png
...

请注意,normal类实例位于所有Abnormal类实例之后,它们都以这种方式排序。

我正在阅读以下格式的图像及其ID:

X_uu_train = read_imgs(df_train_data.uu.values,img_height,img_width,channels)
X_vv_train = read_imgs(df_train_data.vv.values,channels)
train_labels = df_train_data.ID.values

其中read_imgs返回numpy数组中的所有图像。

Memory错误发生在X_uu_train = read_imgs(df_train_data.uu.values,channels)

我已经看到一些解决方案,建议使用ImageDataGenerator批量加载图像。但是,我没有从大多数网站中所示的目录中加载图像。原来有a way可以从数据帧中加载像.flow_from_dataframe这样的图像。

这里是训练阶段:

hist = base_model.fit([X_uu_train,X_vv_train],train_labels,batch_size=batch_size,epochs=epochs,verbose=1,validation_data=([X_uu_val,X_vv_val],val_labels),shuffle=True)
preds = base_model.predict([X_uu_val,X_vv_val])

问题是它仅使用单输入即可完成,但我的生成器应为双输入带来图像批处理。

有人可以帮助我构造一个ImageDataGenerator以便我可以加载图像而不会遇到MemoryError

uuvv列加载图像时,应将图像及其对应的对以随机顺序输入到网络中。

P.S。如有必要,我可能会提供更多信息

谢谢。

编辑:

<BatchDataset shapes: (((None,224,3),(None,3)),)),types: ((tf.float32,tf.float32),tf.int32)>

EDIT-2:

AttributeError                            Traceback (most recent call last)
<ipython-input-18-4ae4c12b2b76> in <module>
     43 
     44                 base_model = combined_net()
---> 45                 hist = base_model.fit(ds_train,validation_data=ds_val,shuffle=True)
     46 
     47                 preds = base_model.predict(ds_val)

~\Anaconda3\lib\site-packages\keras\engine\training.py in fit(self,x,y,batch_size,epochs,verbose,callbacks,validation_split,validation_data,shuffle,class_weight,sample_weight,initial_epoch,steps_per_epoch,validation_steps,validation_freq,max_queue_size,workers,use_multiprocessing,**kwargs)
   1152             sample_weight=sample_weight,1153             class_weight=class_weight,-> 1154             batch_size=batch_size)
   1155 
   1156         # Prepare validation data.

~\Anaconda3\lib\site-packages\keras\engine\training.py in _standardize_user_data(self,check_array_lengths,batch_size)
    577             Feed_input_shapes,578             check_batch_axis=False,# Don't enforce the batch size.
--> 579             exception_prefix='input')
    580 
    581         if y is not None:

~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in standardize_input_data(data,names,shapes,check_batch_axis,exception_prefix)
     97         data = data.values if data.__class__.__name__ == 'DataFrame' else data
     98         data = [data]
---> 99     data = [standardize_single_array(x) for x in data]
    100 
    101     if len(data) != len(names):

~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in <listcomp>(.0)
     97         data = data.values if data.__class__.__name__ == 'DataFrame' else data
     98         data = [data]
---> 99     data = [standardize_single_array(x) for x in data]
    100 
    101     if len(data) != len(names):

~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in standardize_single_array(x)
     32                 'Got tensor with shape: %s' % str(shape))
     33         return x
---> 34     elif x.ndim == 1:
     35         x = np.expand_dims(x,1)
     36     return x

AttributeError: 'BatchDataset' object has no attribute 'ndim'

解决方法

ImageDataGenerator创建一个tf.data.Dataset对象,因此您可以直接使用它来提高灵活性。您可以传递文件名列表,它只会迭代加载它们。

import pandas as pd
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf

df = pd.read_clipboard()

x = df.uu
y = df.vv
z = df.class_id

def load(file_path):
    img = tf.io.read_file(file_path)
    img = tf.image.decode_png(img,channels=3)
    img = tf.image.convert_image_dtype(img,tf.float32)
    img = tf.image.resize(img,size=(100,100))
    return img

ds = tf.data.Dataset.from_tensor_slices((x,y,z)).\
    map(lambda xx,yy,zz: (load(xx),load(yy),zz)).\
    batch(4)

next(iter(ds))

这是一个完整的示例,从文件列表开始(如果有数据框,这很容易),并且一路建模培训。

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import numpy as np
import cv2
from skimage import data
import tensorflow as tf

coffee = data.coffee()
cat = data.chelsea()

for image,name in zip([coffee,cat],['coffee','cat']):
    for i in range(5):
        cv2.imwrite(f'{name}_{i}.png',image)

cat_files = list(filter(lambda x: x.startswith('cat'),os.listdir()))
coffee_files = list(filter(lambda x: x.startswith('coffee'),os.listdir()))


def load(file_path):
    img = tf.io.read_file(file_path)
    img = tf.image.decode_png(img,100))
    return img


def label(string):
    return tf.cast(tf.equal(string,'abnormal'),tf.int32)


x = cat_files
y = coffee_files
z = np.random.choice(['normal','abnormal'],5)

inputs = tf.data.Dataset.from_tensor_slices((x,y)).map(lambda x,y: (load(x),load(y)))
labels = tf.data.Dataset.from_tensor_slices(z).map(lambda x: label(x))

ds = tf.data.Dataset.zip((inputs,labels)).batch(4)

next(iter(ds))

inputs1 = tf.keras.layers.Input(shape=(100,100,3),name='input1')
inputs2 = tf.keras.layers.Input(shape=(100,name='input2')

xx = tf.keras.layers.Flatten()(inputs1)
yy = tf.keras.layers.Flatten()(inputs2)
x = tf.keras.layers.Concatenate()([xx,yy])
x = tf.keras.layers.Dense(32,activation='relu')(x)
output = tf.keras.layers.Dense(1,activation='sigmoid')(x)
model = tf.keras.Model(inputs=[inputs1,inputs2],outputs=output)

model.compile(loss='binary_crossentropy',optimizer='adam')

history = model.fit(ds)
Train for 2 steps
1/2 [==============>...............] - ETA: 0s - loss: 0.7527
2/2 [==============================] - 1s 251ms/step - loss: 5.5188

那么您还可以预测:

model.predict(ds)
array([[4.7391814e-26],[4.7391814e-26],[4.7390730e-26]],dtype=float32)