问题描述
这是Excel中的简单练习,但不知道如何在Pyspark中做
Period,Rate,value
1,.,100
2,0.01,3,0.02,4,0.01
因此,该值仅在期间1中可用。所有其他值应按以下方式计算:
时段2:100 *(1 + 0.01)= 101
期间3:101 *(1 + 0.02)
周期2本质上是以周期1为基础的值加上周期2中要计算的比率。依此类推。
在Excel中执行此操作非常容易,但不知道如何在Pyspark中执行。
非常感谢。
解决方法
您可以使用log
和exp
来获取该期间之前的总价值。您的价值是乘积。
1,0.01,100 * (1 + 0.01)
2,100 * (1 + 0.01) * (1 + 0.01)
...
n,100 * (1 + 0.01)^n
因此,在窗口上输入log
,sum
值log(1 + 0.01)
,然后返回到exp
。
value = 100
w = Window.orderBy('Period')
df.withColumn('value',value * exp(sum(log(col('Rate') + 1).cast('decimal(38,20)')).over(w))).show()
+------+----+------------------+
|Period|Rate| value|
+------+----+------------------+
| 1| 0.0| 100.0|
| 2|0.01| 101.0|
| 3|0.01| 102.01|
| 4|0.01|103.03010000000002|
| 5|0.01| 104.060401|
| 6|0.01|105.10100501000001|
| 7|0.01|106.15201506010001|
| 8|0.01|107.21353521070101|
| 9|0.01|108.28567056280802|
| 10|0.01|109.36852726843608|
| 11|0.01|110.46221254112045|
| 12|0.01|111.56683466653166|
| 13|0.01|112.68250301319698|
| 14|0.01|113.80932804332895|
| 15|0.01|114.94742132376223|
| 16|0.01|116.09689553699987|
+------+----+------------------+
或者,通过将费率列出来使用aggregate
函数。
value = 100
df.withColumn('temp',expr("aggregate(collect_list(Rate + 1) OVER (ORDER BY Period),1D,(acc,x) -> acc * x)")) \
.withColumn('value',col('temp') * value).show()
+------+----+------------------+------------------+
|Period|Rate| value| temp|
+------+----+------------------+------------------+
| 1| 0.0| 100.0| 1.0|
| 2|0.01| 101.0| 1.01|
| 3|0.01| 102.01| 1.0201|
| 4|0.01|103.03009999999999| 1.030301|
| 5|0.01| 104.060401| 1.04060401|
| 6|0.01| 105.10100501| 1.0510100501|
| 7|0.01|106.15201506009998| 1.061520150601|
| 8|0.01|107.21353521070098|1.0721353521070098|
| 9|0.01|108.28567056280801| 1.08285670562808|
| 10|0.01|109.36852726843608|1.0936852726843609|
| 11|0.01|110.46221254112045|1.1046221254112045|
| 12|0.01|111.56683466653166|1.1156683466653166|
| 13|0.01|112.68250301319698|1.1268250301319698|
| 14|0.01|113.80932804332895|1.1380932804332895|
| 15|0.01|114.94742132376223|1.1494742132376223|
| 16|0.01|116.09689553699987|1.1609689553699987|
+------+----+------------------+------------------+
两个示例在第四个周期都存在精度问题。