自启动模型是否具有估算R中高斯模型参数的功能?

问题描述

我需要估计一个高斯模型的参数。我喜欢使用自启动来选择参数。我已经使用具有不同数据集的逻辑模型做了类似的事情。我想知道SSlogis是否对高斯有类似的功能

x <- runif(20)
y <- rexp(20)
a <- data.frame(x,y)

log_model <- nls(y~SSlogis(x,phi1,phi2,phi3),data = a)

我想要做的是一种类似的方法,但是使用高斯模型。我没有找到类似于SSlogis的高斯分布函数。 R文档说有一个SSgauss函数,但我没有找到它https://www.rdocumentation.org/packages/xcms/versions/1.48.0/topics/SSgauss 我看到了与我想要的python3代码类似的东西。

def gaussian_f(x,a,b,c):
   y = a * np.exp(-0.5 * ((x-b)/c)**2)
   return y
##optimize from scipy
gaussian_m,cov = optimize.curve_fit(gaussian_f,x=np.arrange(len(a["y"])),y=dtf["y"].values,maxfev=10000,p0=[1,np.mean(a["y"]),1]

解决方法

R是开源的,Bioconductor在下面的软件包xcms中发布

许可:GPL(> = 2)

因此,只要用户遵守许可条款,就可以下载和使用函数SSgauss的源代码。

这是文件xcms/R/models.R中找到的功能的源代码。

SSgauss <- selfStart(~ h*exp(-(x-mu)^2/(2*sigma^2)),function(mCall,data,LHS) {
  
  xy <- sortedXyData(mCall[["x"]],LHS,data)
  
  len <- dim(xy)[1]
  xyarea <- sum((xy[2:len,2]+xy[1:(len-1),2])*(xy[2:len,1]-xy[1:(len-1),1]))/2
  maxpos <- which.max(xy[,2])
  
  mu <- xy[maxpos,1]
  h <- xy[maxpos,2]
  sigma <- xyarea/(h*sqrt(2*pi))
  
  value <- c(mu,sigma,h)
  names(value) <- mCall[c("mu","sigma","h")]
  value
  
},c("mu","h"))

现在将高斯模型拟合到问题中的数据集。

x <- runif(20)
y <- rexp(20)
a <- data.frame(x,y)

gauss_model <- nls(y ~ SSgauss(x,mu,h),data = a)
summary(gauss_model)
#
#Formula: y ~ SSgauss(x,h)
#
#Parameters:
#      Estimate Std. Error t value Pr(>|t|)    
#mu      0.5844     0.0989   5.909 1.72e-05 ***
#sigma   0.3540     0.1436   2.465  0.02463 *  
#h       1.2453     0.3364   3.702  0.00177 ** 
#---
#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
#Residual standard error: 0.7832 on 17 degrees of freedom
#
#Number of iterations to convergence: 9 
#Achieved convergence tolerance: 2.897e-06