熊猫UDFPySpark-类型错误

问题描述

我正在尝试使用spaCy和Pandas UDF(PySpark)进行实体提取,但出现错误
使用UDF可以正常工作,但速度很慢。我在做什么错了?

每次加载模型都是为了避免加载错误- Can't find model 'en_core_web_lg'. It doesn't seem to be a shortcut link,a Python package or a valid path to a data directory.

工作的UDF:

def __get_entities(x):

    global nlp
    nlp = spacy.load("en_core_web_lg")
    ents=[]

    doc = nlp(x)

    for ent in doc.ents:
        if ent.label_ == 'PERSON' OR ent.label_ == 'ORG':
            ents.append(ent.label_)

    return ents

get_entities_udf = F.udf(__get_entities),T.ArrayType(T.StringType()))

熊猫UDF错误

def __get_entities(x):

    global nlp
    nlp = spacy.load("en_core_web_lg")
    ents=[]

    doc = nlp(x)

    for ent in doc.ents:
        if ent.label_ == 'PERSON' OR ent.label_ == 'ORG':
            ents.append(ent.label_)

    return pd.Series(ents)


get_entities_udf = F.pandas_udf(lambda x: __get_entities(x),"array<string>",F.PandasUDFType.SCALAR)

错误消息:

TypeError: Argument 'string'has incorrect type (expected str,got series)

示例Spark DataFrame:

df = spark.createDataFrame([
  ['John Doe'],['Jane Doe'],['Microsoft Corporation'],['Apple Inc.'],]).toDF("name",)

新列:

df_new = df.withColumn('entity',get_entities_udf('name'))

解决方法

您需要将输入显示为pd.Series,而不是单个值

我可以通过重构代码来使其工作。请注意x.apply调用是特定于熊猫的,并将函数应用于pd.Series

def entities(x):
    global nlp
    import spacy
    nlp = spacy.load("en_core_web_lg")
    ents=[]

    doc = nlp(x)

    for ent in doc.ents:
        if ent.label_ == 'PERSON' or ent.label_ == 'ORG':
            ents.append(ent.label_)
    return ents


def __get_entities(x):
    return x.apply(entities)

get_entities_udf = pandas_udf(lambda x: __get_entities(x),"array<string>",PandasUDFType.SCALAR)

df_new = df.withColumn('entity',get_entities_udf('name'))

df_new.show()

+--------------------+--------+
|                name|  entity|
+--------------------+--------+
|            John Doe|[PERSON]|
|            Jane Doe|[PERSON]|
|Microsoft Corpora...|   [ORG]|
|          Apple Inc.|   [ORG]|
+--------------------+--------+
,

我正在使用:pyspark 3.1.1python 3.7

上面的答案对我不起作用,我花了相当多的时间让事情发挥作用,所以我想我会分享我想出的解决方案。

设置

创建一个包含 16 个随机人物和公司名称的样本

import pandas as pd

from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StringType,ArrayType
from pyspark.sql.functions import pandas_udf,PandasUDFType

from faker import Faker
import spacy

spark = SparkSession.builder.appName("pyspark_sandbox").getOrCreate()

names = []
fake = Faker()
for _ in range(8):
    names.append(f"{fake.company()} {fake.company_suffix()}")
    names.append(fake.name())

df = spark.createDataFrame(names,StringType())

原来如此

首先,检查当前提出的解决方案。我只是在加载 spacy 模型时添加一个打印语句,以查看我们加载模型的次数。

# printing a msg each time we load the model
def load_spacy_model():
    print("Loading spacy model...")
    return spacy.load("en_core_web_sm")

def entities(x):
    global nlp
    import spacy
    nlp = load_spacy_model()
    ents=[]

    doc = nlp(x)

    for ent in doc.ents:
        if ent.label_ == 'PERSON' or ent.label_ == 'ORG':
            ents.append(ent.label_)
    return ents


def __get_entities(x):
    return x.apply(entities)

get_entities_udf = pandas_udf(lambda x: __get_entities(x),get_entities_udf('value'))

df_new.show()

然后我们可以看到模型加载了16 次,因此我们处理的每个条目都加载了一次。不是我想要的。

批处理

使用 spark 3.0+ 中引入的装饰器重写,即使用类型提示 (python 3.6+)。然后我们的 UDF 使用 nlp.pipe() 对整个 pd.Series 进行批处理

# printing a msg each time we load the model
def load_spacy_model():
    print("Loading spacy model...")
    return spacy.load("en_core_web_sm")

# decorator indicating that this function is pandas_udf
# and that it's gonna process list of string
@pandas_udf(ArrayType(StringType()))
# function receiving a pd.Series and returning a pd.Series
def entities(list_of_text: pd.Series) -> pd.Series:
    global nlp
    nlp = load_spacy_model()
    docs = nlp.pipe(list_of_text)

    # retrieving the str representation of entity label
    # as we are limited in the types of obj
    # we can return from a panda_udf
    # we couldn't return a Span obj for example
    ents=[
        [ent.label_ for ent in doc.ents]
        for doc in docs
    ]
    return pd.Series(ents)


df_new = df.withColumn('entity',entities('value'))

df_new.show()

就我而言,模型加载了 4 次,效果更好。每次创建一个 python worker 来处理一个批处理。所以这个数字将取决于 Spark 使用了多少个内核,但在我的情况下更重要:我们的数据有多少分区。所以还没有达到最佳状态

广播nlp对象

# printing a msg each time we load the model
def load_spacy_model():
    print("Loading spacy model...")
    return spacy.load("en_core_web_sm")

@pandas_udf(ArrayType(StringType()))
def entities(list_of_text: pd.Series) -> pd.Series:
    nlp = boardcasted_nlp.value
    docs = nlp.pipe(list_of_text)

    # retrieving the str representation of entity label
    # as we are limited in the types of obj
    # we can return from a panda_udf
    # we couldn't return a Span obj for example
    ents=[
        [ent.label_ for ent in doc.ents]
        for doc in docs
    ]
    return pd.Series(ents)

boardcasted_nlp = spark.sparkContext.broadcast(load_spacy_model())

df_new = df.withColumn('entity',entities('value'))

df_new.show()

现在模型只加载一次,然后广播给每个生成的 python 工作线程。

完整代码

import pandas as pd

from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StringType,PandasUDFType

from faker import Faker
import spacy

spark = SparkSession.builder.appName("pyspark_sandbox").getOrCreate()

# creating our set of fake person and company names
names = []
fake = Faker()
for _ in range(8):
    names.append(f"{fake.company()} {fake.company_suffix()}")
    names.append(fake.name())

df = spark.createDataFrame(names,StringType())

# printing a msg each time we load the model
def load_spacy_model():
    print("Loading spacy model...")
    return spacy.load("en_core_web_sm")

# decorator indicating that this function is pandas_udf
# and that it's gonna process list of string
@pandas_udf(ArrayType(StringType()))
# function receiving a pd.Series and returning a pd.Series
def entities(list_of_text: pd.Series) -> pd.Series:
    # retrieving the shared nlp object
    nlp = boardcasted_nlp.value
    # batch processing our list of text
    docs = nlp.pipe(list_of_text)
    
    # retrieving the str representation of entity label
    # as we are limited in the types of obj
    # we can return from a panda_udf
    # we couldn't return a Span obj for example
    ents=[
        [ent.label_ for ent in doc.ents]
        for doc in docs
    ]
    return pd.Series(ents)

# we load the spacy model and broadcast it
boardcasted_nlp = spark.sparkContext.broadcast(load_spacy_model())

df_new = df.withColumn('entity',entities('value'))

df_new.show(truncate=False)

结果

+----------------------------------+--------------------------------+
|value                             |entity                          |
+----------------------------------+--------------------------------+
|Ferguson,Price and Green Ltd     |[ORG,ORG,ORG]                 |
|Cassandra Goodman MD              |[PERSON]                        |
|Solis Ltd LLC                     |[ORG]                           |
|Laurie Foster                     |[PERSON]                        |
|Lane-Vasquez Group                |[ORG]                           |
|Matthew Wright                    |[PERSON]                        |
|Scott,Pugh and Rodriguez and Sons|[PERSON,PERSON,PERSON]|
|Tina Cooke                        |[PERSON]                        |
|Watkins,Blake and Foster Ltd     |[ORG]                           |
|Charles Reyes                     |[PERSON]                        |
|Cooper,Norris and Roberts PLC    |[ORG]                           |
|Michael Tate                      |[PERSON]                        |
|Powell,Lawson and Perez and Sons |[PERSON,PERSON]|
|James Wolf PhD                    |[PERSON]                        |
|Greer-Swanson PLC                 |[ORG]                           |
|Nicholas Hale                     |[PERSON]                        |
+----------------------------------+--------------------------------+