Tensorflow估算器:使用加权分布概率的样本

问题描述

我想使用加权分布(概率)采样数据

示例如下:

类分配: doc_distribution = {0: 40,1: 18,2: 8,3: 598,...,9: 177}

我将以同等的概率制作一批数据集。

total_dataset = 0
init_dist = []
for value in doc_distribution.values():
  total_dataset += value
for value in doc_distribution.values():
  init_dist.append(value / total_dataset)
target_dist = []
for value in doc_distribution.values():
  target_dist.append(1 / len(doc_distribution))

然后,我用input_fn中的tf.estimator导出模型,

def input_fn(ngram_words,labels,opts):
  dataset = tf.data.Dataset.from_tensor_slices((ngram_words,labels))
  rej = tf.data.experimental.rejection_resample(class_func = lambda _,c : c,\
    target_dist = target_dist,initial_dist = init_dist,seed = opts.seed)
  dataset = dataset.shuffle(buffer_size = len(ngram_words) * 2,seed = opts.seed)
  return dataset.batch(20)

最后,我可以得到rejection_resample的结果,如下所示:

for next_elem in a:
  k = next_elem[1]
  break
dist = {}
for val in np.array(k):
  if val in dist:
    dist[val] += 1
  else:
    dist[val] = 1
print(dist)

结果是:{3: 33,8: 14,4: 17,7: 5,5: 10,9: 12,0: 6,6: 3}

我不知道为什么rejection_resample不能正常工作,我只想平等地提取样本。 我该如何解决

input_fn的{​​{1}}中是否有任何方法可以均等采样?

解决方法

我们可以使用tf.data.experimental.sample_from_datasets代替rejection_resample

unbatched_dataset = [(dataset.filter(lambda _,label: label == i)) for i in range(0,classify_num)]
weights = [1 / classify_num] * classify_num
balanced_ds = tf.data.experimental.sample_from_datasets(unbatched_dataset,weights,seed=opts.seed)
dataset = balanced_ds.shuffle(buffer_size = 1000,seed = opts.seed).repeat(opts.epochs)