elasticsearch将数据转换为数组

问题描述

我想使用ES来计算用户保留:

  • 1,事件记录到认索引
  • 2,转换为中间索引:以实体为中心的数据,按acc分组
  • 3,使用aggs过滤器(或adjacency_matrix)计算每天的相交结果。

问题出在第二步:如何生成一个不错的转换

输入事件日志:

POST _bulk
{"index": {"_index": "test.u1"}}
{"acc":1001,"event":"create","timestamp":"2020-08-01 09:00"}
{"index": {"_index": "test.u1"}}
{"acc":1001,"event":"login","timestamp":"2020-08-01 10:00"}
{"index": {"_index": "test.u1"}}
{"acc":1001,"timestamp":"2020-08-02 10:00"}
{"index": {"_index": "test.u1"}}
{"acc":1001,"timestamp":"2020-08-03 10:00"}
{"index": {"_index": "test.u1"}}
{"acc":1002,"timestamp":"2020-08-01 10:00"}
{"index": {"_index": "test.u1"}}
{"acc":1002,"timestamp":"2020-08-02 10:00"}
{"index": {"_index": "test.u1"}}
{"acc":1002,"timestamp":"2020-08-02 11:00"}
{"index": {"_index": "test.u1"}}
{"acc":1003,"timestamp":"2020-08-01 10:00"}
{"index": {"_index": "test.u1"}}
{"acc":1004,"timestamp":"2020-08-02 10:00"}
{"index": {"_index": "test.u1"}}
{"acc":1004,"timestamp":"2020-08-03 10:00"}

期望中间索引:

{"acc":1001,"create":"08-01","login":[08-01,08-02,08-03]}
{"acc":1002,"login":[08-02]}
{"acc":1003,"login":[]}
{"acc":1004,"create":"08-02","login":[08-02,08-03]}

如何生成登录数组? 或任何更好的设计都可以。

解决方法

通过 aggs.scripted_metric

完成
PUT _transform/tr-acc2-ar2
{
  "source": {
    "index": [
      "mhlog2-*"
    ]
  },"pivot": {
    "group_by": {
      "msg.#account_id": {
        "histogram": {
          "field": "msg.#account_id","interval": "1"
        }
      }
    },"aggregations": {
      "create": {
        "filter": {
          "term": {
            "msg.#event_name.keyword": "createRole"
          }
        },"aggs": {
          "time": {
            "min": {
              "field": "@timestamp"
            }
          }
        }
      },"login": {
        "filter": {
          "term": {
            "msg.#event_name.keyword": "login"
          }
        },"aggs": {
          "days": {
            "scripted_metric": {
              "init_script": "state.days=[:];","map_script": "state.days[doc['@timestamp'].value.toString('yyyy-MM-dd')]=1; ","combine_script": "return state","reduce_script": "def days = [:]; def array =[]; for (s in states) { for (d in s.days.keySet()) { days[d]=1; } }  for (d in days.keySet()) { array.add(d);} return array; "
            }
          }
        }
      }
    }
  },"dest": {
    "index": "idx.tr.acc2.ar2"
  },"sync": {
    "time": {
      "field": "@timestamp","delay": "60s"
    }
  }
}

gen中间索引:

_id : AAAAAAAA
_index : acc.array  
_score : 0
_type : _doc    
create.time : Aug 18,2020 @ 11:17:43.000   
login.days : 2020-08-18T00:00:00.000Z,2020-08-19T00:00:00.000Z,2020-08-20T00:00:00.000Z   
msg.#account_id : 12333212323

最后,通过KQL过滤器,用户保留2020-08-19的2020-08-18很容易:

create.time: 2020-08-18 AND login.days: 2020-08-19