如何从 scikit-learn 决策树中提取决策规则?

问题描述

我相信这个答案比这里的其他答案更正确:

from sklearn.tree import _tree

def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    print "def tree({}):".format(", ".join(feature_names))

    def recurse(node, depth):
        indent = "  " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            print "{}if {} <= {}:".format(indent, name, threshold)
            recurse(tree_.children_left[node], depth + 1)
            print "{}else:  # if {} > {}".format(indent, name, threshold)
            recurse(tree_.children_right[node], depth + 1)
        else:
            print "{}return {}".format(indent, tree_.value[node])

    recurse(0, 1)

这将打印出一个有效的 Python 函数。这是一个尝试返回其输入的树的示例输出一个介于 0 和 10 之间的数字。

def tree(f0):
  if f0 <= 6.0:
    if f0 <= 1.5:
      return [[ 0.]]
    else:  # if f0 > 1.5
      if f0 <= 4.5:
        if f0 <= 3.5:
          return [[ 3.]]
        else:  # if f0 > 3.5
          return [[ 4.]]
      else:  # if f0 > 4.5
        return [[ 5.]]
  else:  # if f0 > 6.0
    if f0 <= 8.5:
      if f0 <= 7.5:
        return [[ 7.]]
      else:  # if f0 > 7.5
        return [[ 8.]]
    else:  # if f0 > 8.5
      return [[ 9.]]

以下是我在其他答案中看到的一些绊脚石:

  1. 用来tree_.threshold == -2决定一个节点是否是叶子不是一个好主意。如果它是一个阈值为 -2 的真实决策节点怎么办?相反,您应该查看tree.featureor tree.children_*
  2. 该行在features = [feature_names[i] for i in tree_.feature]我的 sklearn 版本中崩溃,因为 的某些值为tree.tree_.feature-2(特别是对于叶节点)。
  3. 递归函数中不需要有多个 if 语句,一个就可以了。

解决方法

我可以从决策树中的训练树中提取基础决策规则(或“决策路径”)作为文本列表吗?

就像是:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'