Spark结构化流媒体以读取嵌套的Kafka Connect jsonConverter消息

问题描述

我已经使用KafkaConnect文件脉冲连接器1.5.3提取了xml文件 然后我想用Spark Streaming读取它以解析/展平它。因为它很嵌套。

我从卡夫卡中读出了

字符串(我使用了消费者控制台读出了该字符串,并在payload之前放置了Enter / new行以进行说明),如下所示:

{
"schema":{"type":"struct","fields":[{"type":"struct","fields":[{"type":"string","optional":true,"field":"city"},{"type":"array","items":{"type":"struct","fields":[{"type":"array","field":"unit"},{"type":"string","field":"value"}],"name":"Value"},"name":"ForcedArrayType"},"field":"forcedArrayField"},"field":"lastField"}],"name":"Data","field":"data"}],"optional":true},"payload":{"data":{"city":"someCity","forcedArrayField":[{"value":[{"unit":"unitField1","value":"123"},{"unit":"unitField1","value":"456"}]}],"lastField":"2020-08-02T18:02:00"}}
}
我尝试了

数据类型

    StructType schema = new StructType();
    schema = schema.add( "schema",StringType,false);
    schema = schema.add( "payload",false);

    StructType Data = new StructType();
    StructType ValueArray = new StructType(new StructField[]{
            new StructField("unit",true,Metadata.empty()),new StructField("value",Metadata.empty())
    });
    StructType ForcedArrayType = new StructType(new StructField[]{
            new StructField("valueArray",ValueArray,Metadata.empty())
    });

    Data = Data.add("city",true);
    Data = Data.add("forcedArrayField",ForcedArrayType,true);
    Data = Data.add("lastField",true);

    StructType Record = new StructType();
    Record = Record.add("data",Data,false);

查询,我尝试过

        //below worked for payload
        Dataset<Row> parsePayload = lines
                .selectExpr("cast (value as string) as json")
                .select(functions.from_json(functions.col("json"),schema=schema).as("schemaAndPayload"))
                .select("schemaAndPayload.payload").as("payload");

        System.out.println(parsePayload.isstreaming());

        //below makes the output empty:
        Dataset<Row> parseValue = parsePayload.select(functions.from_json(functions.col("payload"),Record).as("cols"))
                .select(functions.col("cols.data.city"));
//.select(functions.col("cols.*"));

        StreamingQuery query = parseValue
                .writeStream()
                .format("console")
                .outputMode(OutputMode.Append())
                .start();
        query.awaitTermination();

当我提出parsePayload流时,我可以看到数据(仍然是json struture),但是当我想要选择某些/所有字段(如城市)时。它是空的。

需要帮助 原因数据类型定义是否错误?还是查询错误

Ps。 在控制台上,当我尝试输出“ parsePayload”而不是“ parseValue”时,它显示了一些数据,这使我认为“有效载荷”部分起作用。

 |{"data":{"city":"...|
...

解决方法

您的架构定义似乎不完全正确。我正在复制您的问题,并且能够使用以下模式解析JSON

val payloadSchema = new StructType()
  .add("data",new StructType()
    .add("city",StringType)
    .add("forcedArrayField",ArrayType(new StructType()
      .add("value",ArrayType(new StructType()
        .add("unit",StringType)
        .add("value",StringType)))))
    .add("lastField",StringType))

当我访问各个字段时,我使用了以下选择:

val parsePayload = df
    .selectExpr("cast (value as string) as json")
    .select(functions.from_json(functions.col("json"),schema).as("schemaAndPayload"))
    .select("schemaAndPayload.payload").as("payload")
    .select(functions.from_json(functions.col("payload"),payloadSchema).as("cols"))
    .select(col("cols.data.city").as("city"),explode(col("cols.data.forcedArrayField")).as("forcedArrayField"),col("cols.data.lastField").as("lastField"))
    .select(col("city"),explode(col("forcedArrayField.value").as("middleFields")),col("lastField"))

这给出了输出

+--------+-----------------+-------------------+
|    city|              col|          lastField|
+--------+-----------------+-------------------+
|someCity|[unitField1,123]|2020-08-02T18:02:00|
|someCity|[unitField1,456]|2020-08-02T18:02:00|
+--------+-----------------+-------------------+
,

您的架构定义是错误的。 payloadschema可能不是列/字段 将其读取为静态Json(Spark.read.json)并获取架构,然后在结构化流中使用它。