问题描述
我已经编码了一个简单的MH算法,以估计抛硬币落下的可能性。我已经看过很多遍代码了,但我不明白Metropolis算法如何无法正常工作。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import beta
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
def log_likelihood(theta,trials,heads):
likelihood = nCr(trials,heads) * (theta**heads) * (1 - theta) ** (trials - heads)
return np.log(likelihood)
def log_prior(prior,theta):
return np.log(prior.pdf(theta))
def compute_acceptance_prob(theta_curr,theta_prop,heads,prior):
log_likelihood_theta_curr = log_likelihood(theta_curr,heads)
log_likelihood_theta_prop = log_likelihood(theta_prop,heads)
log_prior_curr = log_prior(prior,theta_curr)
log_prior_prop = log_prior(prior,theta_prop)
log_post_curr = log_likelihood_theta_curr + log_prior_curr
log_post_prop = log_likelihood_theta_prop + log_prior_prop
return min(1,log_post_prop / log_post_curr)
def Metropolis_hastings(prior,a,b,MAX_ITERS = 100000):
thetas = []
theta_curr = beta.rvs(a,b)
for i in range(MAX_ITERS):
theta_prop = theta_curr + np.random.normal(0,0.05)
#print(theta_prop)
if theta_prop > 1 or theta_prop < 0:
theta_prop = theta_curr
prob = compute_acceptance_prob(theta_curr,prior)
r = np.random.uniform(0,1)
if prob > r:
theta_curr = theta_prop
thetas.append(theta_curr)
return thetas
thetas = Metropolis_hastings(theta_1,5,6,20,10)
当我在直方图上绘制theta时,我得到了以下后验形状...这绝对是不正确的。
plt.hist(thetas[20000:],histtype='stepfilled',color = 'darkred',bins=30,alpha=0.8,density=True);
似乎在尾部下方的尾部样本更有可能。但是为什么呢?
解决方法
我意识到我的错误。我不应该记录未归一化后验的比率。