问题描述
我有大约25万行特定于公司的年度数据(2000-2019年),其中包含每个公司的行业SIC代码。目的是根据年份对每个单独的SIC代码的每个变量列中的值求和。前两行的数据如下所示:
>head(compustat)
gvkey datadate fyear indfmt consol popsrc datafmt curcd at capx ceq emp ni revt xrd costat sic
1 1004 20000531 1999 INDL C D STD USD 740.998 22.344 339.515 2.9 35.163 1024.333 NA A 5080
2 1004 20010531 2000 INDL C D STD USD 701.854 13.134 340.212 2.5 18.531 874.255 NA A 5080
3 1004 20020531 2001 INDL C D STD USD 710.199 12.112 310.235 2.2 -58.939 638.721 NA A 5080
4 1004 20030531 2002 INDL C D STD USD 686.621 9.930 294.988 2.1 -12.410 606.337 NA A 5080
对于列“ at”,“ capx”,“ ceq”,“ emp”,“ ni”,“ revt”,“ xrd”,我希望每年使用相同SIC代码的所有公司的总和。因此,我的输出将是2000年至2019年之间每年同一行业SIC中所有变量的总价值。
有人可以帮助我实现这一目标吗?
谢谢
解决方法
尝试此tidyverse
解决方案。您可以按照策略选择所需的变量,设置group_by()
,然后使用summarise_all()
计算总和。您共享的数据很小,但是应该与较大的数据一起使用。这里的代码:
library(tidyverse)
#Code
df %>%
#Filter years
filter(fyear>=2000 & fyear<=2019) %>%
#Select variables
select(sic,fyear,at,capx,ceq,emp,ni,revt,xrd) %>%
#Group by sic and year
group_by(sic,fyear) %>%
#Compute total
summarise_all(sum,na.rm=T)
输出:
# A tibble: 3 x 9
# Groups: sic [1]
sic fyear at capx ceq emp ni revt xrd
<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
1 5080 2000 702. 13.1 340. 2.5 18.5 874. 0
2 5080 2001 710. 12.1 310. 2.2 -58.9 639. 0
3 5080 2002 687. 9.93 295. 2.1 -12.4 606. 0
使用了一些数据:
#Data
df <- structure(list(gvkey = c(1004L,1004L,1004L),datadate = c(20000531L,20010531L,20020531L,20030531L),fyear = 1999:2002,indfmt = c("INDL","INDL","INDL"),consol = c("C","C","C"),popsrc = c("D","D","D"),datafmt = c("STD","STD","STD"),curcd = c("USD","USD","USD"),at = c(740.998,701.854,710.199,686.621
),capx = c(22.344,13.134,12.112,9.93),ceq = c(339.515,340.212,310.235,294.988),emp = c(2.9,2.5,2.2,2.1),ni = c(35.163,18.531,-58.939,-12.41),revt = c(1024.333,874.255,638.721,606.337),xrd = c(NA,NA,NA),costat = c("A","A","A"),sic = c(5080L,5080L,5080L)),class = "data.frame",row.names = c("1","2","3","4"))
,
您可以使用dplyr
库来实现此目的:
考虑到您有一个像这样的数据框dw
:
dw <- read.table(header=T,text='
gvkey datadate fyear indfmt consol popsrc datafmt curcd at capx ceq emp ni revt xrd costat sic
1004 20000531 1999 INDL C D STD USD 740.998 22.344 339.515 2.9 35.163 1024.333 NA A 5080
1004 20010531 2000 INDL C D STD USD 701.854 13.134 340.212 2.5 18.531 874.255 NA A 5080
1004 20020531 2001 INDL C D STD USD 710.199 12.112 310.235 2.2 -58.939 638.721 NA A 5080
1004 20010531 2000 INDL C D STD USD 701.854 13.134 340.212 2.5 18.531 874.255 NA A 5080
1004 20020531 2008 INDL C D STD USD 710.199 12.112 310.235 2.2 -58.939 638.721 NA A 5080
1004 20030531 2002 INDL C D STD USD 686.621 9.930 294.988 2.1 -12.410 606.337 NA A 5080
1004 20030531 2002 INDL C D STD USD 686.621 9.930 294.988 2.1 -12.410 606.337 NA A 5080
')
以下代码可以按sic和fyear对其进行分组,然后选择fyear大于2000的行。
library(dplyr)
df = as.data.frame(dw %>% group_by(sic,fyear) %>% summarise(capx=sum(capx),ceq=sum(ceq),emp=sum(emp),ni=sum(ni),revt=sum(revt),xrd=sum(xrd)))
df = df[df$fyear >=2000,]
print(df)
最终输出如下:
sic fyear capx ceq emp ni revt xrd
5080 2000 26.268 680.424 5.0 37.062 1748.510 NA
5080 2001 12.112 310.235 2.2 -58.939 638.721 NA
5080 2002 19.860 589.976 4.2 -24.820 1212.674 NA
5080 2008 12.112 310.235 2.2 -58.939 638.721 NA