问题描述
我是tensorflow服务的新手,这是我发布的数据:
data_0 = {'inputs/input_x': mfcc[0],"inputs/is_training":False,"inputs/keep_prob":1}
data = json.dumps({"signature_name":'serving_default','instances':[data_0]})
headers = {"Content-type": "application/json"}
json_response = requests.post(URL,data=data,headers=headers)
我从批量归一化的is_training
标志中得到了一个错误(我认为辍学率也是一样):
{ "error": "The second input must be a scalar,but it has shape [1]\n\t [[{{node conv_layer2/conv2/batch_normalization/cond/Switch}}]]" }
然后我看到了类似的问题,并将代码修改为
data_0 = {'inputs/input_x': mfcc[0],"inputs/is_training":[False],"inputs/keep_prob":[1]}
然后我又有了一个维度:
{ "error": "The second input must be a scalar,but it has shape [1,1]\n\t [[{{node conv_layer2/conv2/batch_normalization/cond/Switch}}]]" }
我尝试过不带[]
的帖子,例如:
data = json.dumps({"signature_name":'serving_default','instances':data_0})
我得到了:
"error": "JSON Value:{...} Excepting \'instances\' to be an list/array" }
我的模特信息:
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs/input_x'] tensor_info:
dtype: DT_FLOAT
shape: (-1,34,20)
name: inputs/input_x:0
inputs['inputs/is_training'] tensor_info:
dtype: DT_BOOL
shape: unknown_rank
name: inputs/is_training:0
inputs['inputs/keep_prob'] tensor_info:
dtype: DT_FLOAT
shape: unknown_rank
name: inputs/keep_prob:0
The given SavedModel SignatureDef contains the following output(s):
outputs['Softmax'] tensor_info:
dtype: DT_FLOAT
shape: (-1,2)
name: Softmax:0
Method name is: tensorflow/serving/predict
这里需要帮助,谢谢!
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)