问题描述
我试图比较sklearn
软件包和从头开始的kmean聚类结果。暂存代码如下所示:
import matplotlib.pyplot as plt
from matplotlib import style
style.use('ggplot')
import numpy as np
colors = 10 * ["g","r","c","b","k"]
class K_Means:
def __init__(self,k=3,tol=0.001,max_iter=300):
self.k = k
self.tol = tol
self.max_iter = max_iter
def fit(self,data):
self.centroids = {}
for i in range(self.k):
self.centroids[i] = data[i]
for i in range(self.max_iter):
self.classifications = {}
for i in range(self.k):
self.classifications[i] = []
for featureset in data:
distances = [np.linalg.norm(featureset - self.centroids[centroid]) for centroid in self.centroids]
classification = distances.index(min(distances))
self.classifications[classification].append(featureset)
prev_centroids = dict(self.centroids)
for classification in self.classifications:
self.centroids[classification] = np.average(self.classifications[classification],axis=0)
optimized = True
for c in self.centroids:
original_centroid = prev_centroids[c]
current_centroid = self.centroids[c]
if np.sum((current_centroid - original_centroid) / original_centroid * 100.0) > self.tol:
print(np.sum((current_centroid - original_centroid) / original_centroid * 100.0))
optimized = False
if optimized:
break
def predict(self,data):
distances = [np.linalg.norm(data - self.centroids[centroid]) for centroid in self.centroids]
classification = distances.index(min(distances))
return classification
kmeans = K_Means()
kmeans.fit(reduced_data)
for centroid in kmeans.centroids:
plt.scatter(kmeans.centroids[centroid][0],kmeans.centroids[centroid][1],marker="x",color="b",s=169,linewidths=3,zorder=10)
for classification in kmeans.classifications:
color = colors[classification]
for featureset in kmeans.classifications[classification]:
plt.scatter(featureset[0],featureset[1],marker="o",color=color)
plt.show()
但是,由于收敛的质心不同,结果也有所不同。
sklearn的散点图:
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)