按值对python中堆积条形图的Y轴条形图进行排序

问题描述

我有一个使用plotly的代码示例,可构建堆积的条形图:

import plotly.graph_objects as go

x = ['2018-01','2018-02','2018-03']

fig = go.figure(go.Bar(x=x,y=[10,15,3],name='Client 1'))
fig.add_trace(go.Bar(x=x,y=[12,7,14],name='Client 2'))

fig.update_layout(
    barmode='stack',yaxis={'title': 'amount'},xaxis={
        'type': 'category','title': 'month',},)
fig.show()

输出以下图表:

enter image description here

是否有一种方法可以调整图形布局以按值对每个条形图的Y轴进行排序?
例如,在第二个栏(2018-02)中,客户端1的Y值较高,蓝色栏应位于红色栏的顶部。

解决方法

在Plotly中,迹线始终按照添加到图形中的顺序显示,并且没有允许更改此行为的布局选项。例如,请参见此answer。这意味着对于每个日期,您需要先添加较小值的跟踪,然后再添加较大值的跟踪。下面根据您的代码提供了一个示例。

import plotly.graph_objects as go
import pandas as pd
import numpy as np

# data
df = pd.DataFrame({'Date': ['2018-01','2018-02','2018-03'],'Client 1': [10,15,3],'Client 2': [12,7,14],'Client 3': [18,2,7]})

# colors
colors = {'Client 1': 'red','Client 2': 'blue','Client 3': 'green'}

# traces
data = []

# loop across the different rows
for i in range(df.shape[0]):

    # for each row,order the columns based on
    # their values from smallest to largest
    ordered_columns = df.columns[1:][np.argsort(df.iloc[i,1:].values)]

    # add a separate trace for each column,# ordered from smallest to largest
    for column in ordered_columns:

        data.append(go.Bar(x=[df['Date'][i]],y=[df[column][i]],marker=dict(color=colors[column]),name=column,legendgroup=column,showlegend=i == 0)) # show the legend only once for each column

# layout
layout = dict(barmode='stack',yaxis={'title': 'amount'},xaxis={'type': 'category','title': 'month'})

# figure
fig = go.Figure(data=data,layout=layout)

fig.show()

enter image description here