使用CUDA原子操作和网格同步处理共享工作队列

问题描述

我正在尝试编写一个内核,该线程的线程迭代地处理工作队列中的项目。我的理解是,我应该能够通过以下方式做到这一点:使用原子操作来操纵工作队列(即,从队列中获取工作项并将新的工作项插入到队列中),并通过协作组使用网格同步来确保所有线程在同一迭代中(我确保线程块的数量不超过内核的设备容量)。但是,有时我发现工作项在迭代过程中被跳过或处理了多次。

下面的代码一个有效的示例来说明这一点。在此示例中,创建了一个大小为input_len的数组,其中包含工作项0input_len - 1processWorkItems内核为max_iter迭代处理这些项目。每个工作项都可以将自己及其上一个和下一个工作项放入工作队列,但是marked数组用于确保在迭代过程中,每个工作项最多可以添加到工作队列一次。最后应该发生的是,histogram中的值之和等于input_len * max_iter,而histogram中的值均不大于1。但是我观察到这两个条件偶尔会出现在输出中被违反,这意味着我没有得到原子操作和/或正确的同步。如果有人可以指出我的推理和/或实施中的缺陷,我将不胜感激。我的操作系统是Ubuntu 18.04,CUDA版本是10.1,并且我已经在P100,V100和RTX 2080 Ti GPU上进行了实验,并观察到了类似的行为。

我用于RTX 2080 Ti编译的命令:

nvcc -O3 -o atomicsync atomicsync.cu --gpu-architecture=compute_75 -rdc=true

在RTX 2080 Ti上运行的一些输入和输出

./atomicsync 50 1000 1000
Skipped 0.01% of items. 5 extra item processing.
./atomicsync 500 1000 1000
Skipped 0.00% of items. 6 extra item processing.
./atomicsync 5000 1000 1000
Skipped 0.00% of items. 14 extra item processing.

atomicsync.cu:

#include <stdio.h>
#include <cooperative_groups.h>

#define checkCudaErrors(val) check ( (val),#val,__FILE__,__LINE__ )
template< typename T >
void check(T result,char const *const func,const char *const file,int const line)
{
    if (result)
    {
        fprintf(stderr,"CUDA error at %s:%d code=%d(%s) \"%s\" \n",file,line,static_cast<unsigned int>(result),cudaGetErrorString(result),func);
        cudaDeviceReset();
        exit(EXIT_FAILURE);
    }
}

__device__ inline void addWorkItem(int input_len,int item,int item_adder,int iter,int *queue,int *queue_size,int *marked) {
    int already_marked = atomicExch(&marked[item],1);
    if(already_marked == 0) {
        int idx = atomicAdd(&queue_size[iter + 1],1);
        queue[(iter + 1) * input_len + idx] = item;
    }
}

__global__ void processWorkItems(int input_len,int max_iter,int *histogram,int *marked) {
    auto grid = cooperative_groups::this_grid();

    const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;

    for(int iter = 0; iter < max_iter; ++iter) {
        while(true) {
            // Grab work item to process
            int idx = atomicSub(&queue_size[iter],1);
            --idx;
            if(idx < 0) {
                break;
            }
            int item = queue[iter * input_len + idx];

            // Keep track of processed work items
             ++histogram[iter * input_len + item];

            // Add prevIoUs,self,and next work items to work queue
            if(item > 0) {
                addWorkItem(input_len,item - 1,item,iter,queue,queue_size,marked);
            }
            addWorkItem(input_len,marked);
            if(item + 1 < input_len) {
                addWorkItem(input_len,item + 1,marked);
            }
        }
        __threadfence_system();
        grid.sync();

        // Reset marked array for next iteration
        for(int i = 0; i < items_per_block; ++i) {
            if(blockIdx.x * items_per_block + i < input_len) {
                marked[blockIdx.x * items_per_block + i] = 0;
            }
        }
        __threadfence_system();
        grid.sync();
    }
}

int main(int argc,char* argv[])
{
    int input_len = atoi(argv[1]);
    int max_iter = atoi(argv[2]);
    int num_blocks = atoi(argv[3]);

    // A histogram to keep track of work items that have been processed in each iteration
    int histogram_host[input_len * max_iter];
    memset(histogram_host,sizeof(int) * input_len * max_iter);
    int *histogram_device;
    checkCudaErrors(cudamalloc(&histogram_device,sizeof(int) * input_len * max_iter));
    checkCudaErrors(cudamemcpy(histogram_device,histogram_host,sizeof(int) * input_len * max_iter,cudamemcpyHostToDevice));

    // Size of the work queue for each iteration
    int queue_size_host[max_iter + 1];
    queue_size_host[0] = input_len;
    memset(&queue_size_host[1],sizeof(int) * max_iter);
    int *queue_size_device;
    checkCudaErrors(cudamalloc(&queue_size_device,sizeof(int) * (max_iter + 1)));
    checkCudaErrors(cudamemcpy(queue_size_device,queue_size_host,sizeof(int) * (max_iter + 1),cudamemcpyHostToDevice));

    // Work queue
    int queue_host[input_len * (max_iter + 1)];
    for(int i = 0; i < input_len; ++i) {
        queue_host[i] = i;
    }
    memset(&queue_host[input_len],sizeof(int) * input_len * max_iter);
    int *queue_device;
    checkCudaErrors(cudamalloc(&queue_device,sizeof(int) * input_len * (max_iter + 1)));
    checkCudaErrors(cudamemcpy(queue_device,queue_host,sizeof(int) * input_len * (max_iter + 1),cudamemcpyHostToDevice));

    // An array used to keep track of work items already added to the work queue to
    // avoid multiple additions of a work item in the same iteration
    int marked_host[input_len];
    memset(marked_host,sizeof(int) * input_len);
    int *marked_device;
    checkCudaErrors(cudamalloc(&marked_device,sizeof(int) * input_len));
    checkCudaErrors(cudamemcpy(marked_device,marked_host,sizeof(int) * input_len,cudamemcpyHostToDevice));

    const dim3 threads(1,1,1);
    const dim3 blocks(num_blocks,1);

    processWorkItems<<<blocks,threads>>>(input_len,max_iter,histogram_device,queue_device,queue_size_device,marked_device);
    checkCudaErrors(cudaDeviceSynchronize());

    checkCudaErrors(cudamemcpy(histogram_host,cudamemcpyDevicetoHost));

    int extra = 0;
    double deficit = 0;
    for(int i = 0; i < input_len; ++i) {
        int cnt = 0;
        for(int iter = 0; iter < max_iter; ++iter) {
            if(histogram_host[iter * input_len + i] > 1) {
                ++extra;
            }
            cnt += histogram_host[iter * input_len + i];
        }
        deficit += max_iter - cnt;
    }
    printf("Skipped %.2f%% of items. %d extra item processing.\n",deficit / (input_len * max_iter) * 100,extra);

    checkCudaErrors(cudaFree(histogram_device));
    checkCudaErrors(cudaFree(queue_device));
    checkCudaErrors(cudaFree(queue_size_device));
    checkCudaErrors(cudaFree(marked_device));

    return 0;
}

解决方法

您可能希望阅读如何在programming gude中启动协作网格内核,或者研究使用网格同步的任何cuda示例代码(例如reductionMultiBlockCG,还有其他)。

您做错了。您不能使用普通的<<<...>>>启动语法来启动协作网格。因此,没有理由假设内核中的grid.sync()工作正常。

通过在cuda-memcheck下运行,很容易看到网格同步在代码中不起作用。当您这样做时,结果将大大恶化。

当我修改您的代码以进行适当的协作启动时,Tesla V100上没有问题:

$ cat t1811.cu
#include <stdio.h>
#include <cooperative_groups.h>

#define checkCudaErrors(val) check ( (val),#val,__FILE__,__LINE__ )
template< typename T >
void check(T result,char const *const func,const char *const file,int const line)
{
    if (result)
    {
        fprintf(stderr,"CUDA error at %s:%d code=%d(%s) \"%s\" \n",file,line,static_cast<unsigned int>(result),cudaGetErrorString(result),func);
        cudaDeviceReset();
        exit(EXIT_FAILURE);
    }
}

__device__ inline void addWorkItem(int input_len,int item,int item_adder,int iter,int *queue,int *queue_size,int *marked) {
    int already_marked = atomicExch(&marked[item],1);
    if(already_marked == 0) {
        int idx = atomicAdd(&queue_size[iter + 1],1);
        queue[(iter + 1) * input_len + idx] = item;
    }
}

__global__ void processWorkItems(int input_len,int max_iter,int *histogram,int *marked) {
    auto grid = cooperative_groups::this_grid();

    const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;

    for(int iter = 0; iter < max_iter; ++iter) {
        while(true) {
            // Grab work item to process
            int idx = atomicSub(&queue_size[iter],1);
            --idx;
            if(idx < 0) {
                break;
            }
            int item = queue[iter * input_len + idx];

            // Keep track of processed work items
             ++histogram[iter * input_len + item];

            // Add previous,self,and next work items to work queue
            if(item > 0) {
                addWorkItem(input_len,item - 1,item,iter,queue,queue_size,marked);
            }
            addWorkItem(input_len,marked);
            if(item + 1 < input_len) {
                addWorkItem(input_len,item + 1,marked);
            }
        }
        __threadfence_system();
        grid.sync();

        // Reset marked array for next iteration
        for(int i = 0; i < items_per_block; ++i) {
            if(blockIdx.x * items_per_block + i < input_len) {
                marked[blockIdx.x * items_per_block + i] = 0;
            }
        }
        __threadfence_system();
        grid.sync();
    }
}

int main(int argc,char* argv[])
{
    int input_len = atoi(argv[1]);
    int max_iter = atoi(argv[2]);
    int num_blocks = atoi(argv[3]);

    // A histogram to keep track of work items that have been processed in each iteration
    int *histogram_host = new int[input_len * max_iter];
    memset(histogram_host,sizeof(int) * input_len * max_iter);
    int *histogram_device;
    checkCudaErrors(cudaMalloc(&histogram_device,sizeof(int) * input_len * max_iter));
    checkCudaErrors(cudaMemcpy(histogram_device,histogram_host,sizeof(int) * input_len * max_iter,cudaMemcpyHostToDevice));

    // Size of the work queue for each iteration
    int queue_size_host[max_iter + 1];
    queue_size_host[0] = input_len;
    memset(&queue_size_host[1],sizeof(int) * max_iter);
    int *queue_size_device;
    checkCudaErrors(cudaMalloc(&queue_size_device,sizeof(int) * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_size_device,queue_size_host,sizeof(int) * (max_iter + 1),cudaMemcpyHostToDevice));

    // Work queue
    int *queue_host = new int[input_len * (max_iter + 1)];
    for(int i = 0; i < input_len; ++i) {
        queue_host[i] = i;
    }
    memset(&queue_host[input_len],sizeof(int) * input_len * max_iter);
    int *queue_device;
    checkCudaErrors(cudaMalloc(&queue_device,sizeof(int) * input_len * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_device,queue_host,sizeof(int) * input_len * (max_iter + 1),cudaMemcpyHostToDevice));

    // An array used to keep track of work items already added to the work queue to
    // avoid multiple additions of a work item in the same iteration
    int marked_host[input_len];
    memset(marked_host,sizeof(int) * input_len);
    int *marked_device;
    checkCudaErrors(cudaMalloc(&marked_device,sizeof(int) * input_len));
    checkCudaErrors(cudaMemcpy(marked_device,marked_host,sizeof(int) * input_len,cudaMemcpyHostToDevice));

    const dim3 threads(1,1,1);
    const dim3 blocks(num_blocks,1);
    int dev = 0;
    int supportsCoopLaunch = 0;
    checkCudaErrors(cudaDeviceGetAttribute(&supportsCoopLaunch,cudaDevAttrCooperativeLaunch,dev));
    if (!supportsCoopLaunch) {printf("Cooperative Launch is not supported on this machine configuration.  Exiting."); return 0;}
    /// This will launch a grid that can maximally fill the GPU,on the default stream with kernel arguments
    int numBlocksPerSm = 0;
    // Number of threads my_kernel will be launched with
    int numThreads = threads.x;
    cudaDeviceProp deviceProp;
    checkCudaErrors(cudaGetDeviceProperties(&deviceProp,dev));
    checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm,processWorkItems,numThreads,0));
    // launch
    void *kernelArgs[] = { &input_len,&max_iter,&histogram_device,&queue_device,&queue_size_device,&marked_device};
    dim3 dimBlock = dim3(numThreads,1);
    num_blocks = min(num_blocks,deviceProp.multiProcessorCount*numBlocksPerSm);
    dim3 dimGrid(num_blocks,1);
    printf("launching %d blocks\n",dimGrid.x);
    checkCudaErrors(cudaLaunchCooperativeKernel((void*)processWorkItems,dimGrid,dimBlock,kernelArgs));

    // processWorkItems<<<blocks,threads>>>(input_len,max_iter,histogram_device,queue_device,queue_size_device,marked_device);
    checkCudaErrors(cudaDeviceSynchronize());

    checkCudaErrors(cudaMemcpy(histogram_host,cudaMemcpyDeviceToHost));

    int extra = 0;
    double deficit = 0;
    for(int i = 0; i < input_len; ++i) {
        int cnt = 0;
        for(int iter = 0; iter < max_iter; ++iter) {
            if(histogram_host[iter * input_len + i] > 1) {
                ++extra;
            }
            cnt += histogram_host[iter * input_len + i];
        }
        deficit += max_iter - cnt;
    }
    printf("Skipped %.2f%% of items. %d extra item processing.\n",deficit / (input_len * max_iter) * 100,extra);

    checkCudaErrors(cudaFree(histogram_device));
    checkCudaErrors(cudaFree(queue_device));
    checkCudaErrors(cudaFree(queue_size_device));
    checkCudaErrors(cudaFree(marked_device));

    return 0;
}
$ nvcc -o t1811 t1811.cu -arch=sm_70 -std=c++11 -rdc=true
$ cuda-memcheck ./t1811 50 1000 5000
========= CUDA-MEMCHECK
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ cuda-memcheck ./t1811 50 1000 1000
========= CUDA-MEMCHECK
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ ./t1811 50 1000 5000
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$

我并不是说上面的代码没有缺陷,也不适合任何特定目的。它主要是您的代码。我已经对其进行了修改,以演示所提到的概念。

顺便说一句,我将一些基于堆栈的大型内存分配更改为基于堆的内存分配。我不建议尝试创建基于堆栈的大型数组,例如:

int histogram_host[input_len * max_iter];

我认为最好这样做:

int *histogram_host = new int[input_len * max_iter];

随着输入的命令行参数变大,取决于机器的特性,这可能成为问题。但是,这与CUDA无关。我没有尝试在您的代码中解决此模式的每个实例。

尽管与该特定问题无关,但是网格同步对于成功使用也有其他要求。这些内容涵盖在编程指南中,并且可能包括但不限于:

  • 平台支持(例如OS,GPU等)
  • 内核大小要求(启动的线程或线程块总数)

编程指南包含方便的样板代码,可用于满足这些要求。