在R中水平合并数据框-文本挖掘

问题描述

如何在R中水平合并/合并3个数据框?我有三个数据框,其中一列有一个单词,而下一列是从文本中提取的单词计数,如下所示:

  word.        count
1 hello.         6
2 test.          3
3 how.           8
4 are.           4
5 you.           1

假设数据帧2:

  word.        count
1 hello.         6
2 test.          3
3 i.             3
4 am.            6
5 good.          2

我如何像这样合并它们:

  word.         df1.     df2.      total
1 hello.         6.       6.         12
2 test.          3        3           6
3 how.           8        0.          8 
4 are.           4        0           4
5 you.           1        0           1
6 i              0        3           3
7 am             0        6           6
8 good           0        2           2

而不是2个数据帧,所以我有3个

谢谢!

解决方法

假设每个都有相同的连接列:

out <- Reduce(function(a,b) merge(a,b,by = "word.",all = TRUE),list(df1,df2))
# normally this has `NA` in not-shared words,convert these NAs to 0
out[,-1] <- lapply(out[,-1],function(a) replace(a,is.na(a),0))
out
#    word. count.x count.y
# 1    am.       0       6
# 2   are.       4       0
# 3  good.       0       2
# 4 hello.       6       6
# 5   how.       8       0
# 6     i.       0       3
# 7  test.       3       3
# 8   you.       1       0

无论您有多少帧,都将它们放在list中,这样就可以了。 (有关{frame}效率的讨论,请参见https://stackoverflow.com/a/24376207/3358272

您现在要做的就是更改列名。 (许多这样做的技术。)


数据

df1 <- structure(list(word. = c("hello.","test.","how.","are.","you."),count = c(6L,3L,8L,4L,1L)),class = "data.frame",row.names = c("1","2","3","4","5"))
df2 <- structure(list(word. = c("hello.","i.","am.","good."),6L,2L)),"5"))
,

大多数合并或使用更专业的术语在表之间执行联接操作的R函数被设计为一次在两个表上使用。在base R中,我们有merge函数用于这些联接操作。由于您有两个以上的表要合并,即使有这种行为,也可以使用Reduce函数轻松地在表中复制连接。如下定义:

以下是输入数据:

word <- c("hello.","you.") 

df1 <- data.frame(
  word = word,count = 11:15
)

set.seed(1)
df2 <- data.frame(
  word = sample(word,size = 8,replace = T),value2 = rnorm(8)
)

set.seed(1)
df3 <- data.frame(
  word = word[c(3,4)],value3 = rnorm(2)
)

以下是加入操作:

list_dfs <- list(df1,df2,df3)

multi_inner <- Reduce(
  function(x,y,...) merge(x,by = "word",list_dfs
)

结果如下:

    word count       value2     value3
1   are.    14 -0.294720447  0.1836433
2 hello.    11 -0.928567035         NA
3 hello.    11 -0.005767173         NA
4   how.    13 -0.799009249 -0.6264538
5   how.    13 -0.289461574 -0.6264538
6  test.    12  2.404653389         NA
7  test.    12 -1.147657009         NA
8   you.    15  0.763593461         NA

现在,在此示例中,我正在考虑您要保存3个表之间的所有可能组合。如果仅是要识别所有表中出现的匹配项(或word列中的单词),则需要将all参数设置为FALSE。像这样:

multi_inner <- Reduce(
  function(x,all = FALSE),list_dfs
)

结果:

  word count     value2     value3
1 are.    14 -0.2947204  0.1836433
2 how.    13 -0.7990092 -0.6264538
3 how.    13 -0.2894616 -0.6264538