问题描述
我正在按照BERT指令进行微调,如here
所述这是我的代码:
from sentence_transformers import SentenceTransformer,SentencesDataset,InputExample,losses,evaluation
from torch.utils.data import DataLoader
# load model
embedder = SentenceTransformer('bert-large-nli-mean-tokens')
print("embedder loaded...")
# define your train dataset,the dataloader,and the train loss
train_dataset = SentencesDataset(x_sample["input"].tolist(),embedder)
train_dataloader = DataLoader(train_dataset,shuffle=False,batch_size=16)
train_loss = losses.CosineSimilarityLoss(embedder)
sentences1 = ['This list contains the first column','With your sentences','You want your model to evaluate on']
sentences2 = ['Sentences contains the other column','The evaluator matches sentences1[i] with sentences2[i]','Compute the cosine similarity and compares it to scores[i]']
scores = [0.3,0.6,0.2]
evaluator = evaluation.EmbeddingSimilarityEvaluator(sentences1,sentences2,scores)
# tune the model
embedder.fit(train_objectives=[(train_dataloader,train_loss)],epochs=1,warmup_steps=100,evaluator=evaluator,evaluation_steps=1)
在4%的情况下,培训停止并且程序存在,没有警告或错误。没有输出。
我不知道如何进行故障排除-任何帮助都会很棒。
编辑:将标题从失败更改为停止/退出,因为我不知道它是否失败
这是我在终端上看到的内容: 时期:0%| 被杀:0%|
“杀死”一词与“迭代”一词重叠...也许是内存问题?仅供参考:我是在Windows的ubuntu vm上使用wsl在vscode的终端上运行它的
在github上发现了问题: https://github.com/ElderResearch/gpu_docker/issues/38
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)