问题描述
我已经花了30个小时来调试这个问题,这完全没有道理,希望你们中的一个可以向我展示不同的观点。
问题是我在随机森林中使用了训练数据框,并获得了98%-99%的非常好的准确性,但是当我尝试加载新的样本进行预测时。该模型总是猜测相同的类。
# Shuffle the data-frames records. The labels are still attached
df = df.sample(frac=1).reset_index(drop=True)
# Extract the labels and then remove them from the data
y = list(df['label'])
X = df.drop(['label'],axis='columns')
# Split the data into training and testing sets
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=TEST_SIZE)
# Construct the model
model = RandomForestClassifier(n_estimators=N_ESTIMATORS,max_depth=MAX_DEPTH,random_state=RANDOM_STATE,oob_score=True)
# Calculate the training accuracy
in_sample_accuracy = model.fit(X_train,y_train).score(X_train,y_train)
# Calculate the testing accuracy
test_accuracy = model.score(X_test,y_test)
print()
print('In Sample Accuracy: {:.2f}%'.format(model.oob_score_ * 100))
print('Test Accuracy: {:.2f}%'.format(test_accuracy * 100))
我处理数据的方式是相同的,但是当我对X_test或X_train进行预测时,我得到了正常的98%,而对新数据进行预测时,它总是猜出了同一类。
# The json file is not in the correct format,this function normalizes it
normalized_json = json_normalizer(json_file,"",training=False)
# Turn the json into a list of dictionaries which contain the features
features_dict = create_dict(normalized_json,label=None)
# Convert the dictionaries into pandas dataframes
df = pd.DataFrame.from_records(features_dict)
print('Total amount of email samples: ',len(df))
print()
df = df.fillna(-1)
# One hot encodes string values
df = one_hot_encode(df,noOverride=True)
if 'label' in df.columns:
df = df.drop(['label'],axis='columns')
print(list(model.predict(df))[:100])
print(list(model.predict(X_train))[:100])
以上是我的测试场景,您可以在最后两行中看到我在X_train
上预测用于训练模型的数据,并且df
总是会猜测为0类的样本数据
一些有用的信息:
任何想法都是有帮助的,如果您需要更多信息,请让我知道我的大脑现在被炸了,这就是我能想到的。
解决方法
固定,问题在于数据集的不平衡,我意识到改变深度会给我带来不同的结果。
例如,3深度的10棵树->似乎工作正常 10棵6深度的树->回到只猜测同一类