问题描述
在以下情况下,我很难在gremlin中确定查询。这是有向图(可能是循环的)。
我想从节点“ Jane”开始获得前N个有利节点,在这里,有利条件定义为:
favor(Jane->Lisa) = edge(Jane,Lisa) / total weight from outwards edges of Lisa
favor(Jane->Thomas) = favor(Jane->Thomas) + favor(Jane->Lisa) * favor(Lisa->Thomas)
favor(Jane->Jerryd) = favor(Jane->Thomas) * favor(Thomas->Jerryd) + favor(Jane->Lisa) * favor(Lisa->Jerryd)
favor(Jane->Jerryd) = [favor(Jane->Thomas) + favor(Jane->Lisa) * favor(Lisa->Thomas)] * favor(Thomas->Jerryd) + favor(Jane->Lisa) * favor(Lisa->Jerryd)
and so .. on
这是同一张图,用手工计算出我的意思,
这很容易通过编程进行传输,但是我不确定用gremlin甚至sparql查询它的精确程度。
以下是创建此示例图的查询:
g
.addV('person').as('1').property(single,'name','jane')
.addV('person').as('2').property(single,'thomas')
.addV('person').as('3').property(single,'lisa')
.addV('person').as('4').property(single,'wyd')
.addV('person').as('5').property(single,'jerryd')
.addE('favor').from('1').to('2').property('weight',10)
.addE('favor').from('1').to('3').property('weight',20)
.addE('favor').from('3').to('2').property('weight',90)
.addE('favor').from('2').to('4').property('weight',50)
.addE('favor').from('2').to('5').property('weight',90)
.addE('favor').from('3').to('5').property('weight',100)
我要寻找的是:
[Lisa,computedFavor]
[Thomas,computedFavor]
[Jerryd,computedFavor]
[Wyd,computedFavor]
我正在努力不配合循环图来调整权重。到目前为止,这是我可以查询的地方:https://gremlify.com/f2r0zy03oxc/2
g.V().has('name','jane'). // our starting node
repeat(
union(
outE() // get only outwards edges
).
otherV().simplePath()). // produce simple path
emit().
times(10). // max depth of 10
path(). // attain path
by(valueMap())
favor(Jane->Jerryd) =
favor(Jane->Thomas) * favor(Thomas->Jerryd)
+ favor(Jane->Lisa) * favor(Lisa->Jerryd)
// note we can expand on favor(Jane->Thomas) in above expression
//
// favor(Jane->Thomas) is favor(Jane->Thomas)@directEdge +
// favor(Jane->Lisa) * favor(Lisa->Thomas)
//
计算示例
Jane to Lisa => 20/(10+20) => 2/3
Lisa to Jerryd => 100/(100+90) => 10/19
Jane to Lisa to Jerryd => 2/3*(10/19)
Jane to Thomas (directly) => 10/(10+20) => 1/3
Jane to Lisa to Thomas => 2/3 * 90/(100+90) => 2/3 * 9/19
Jane to Thomas => 1/3 + (2/3 * 9/19)
Thomas to Jerryd => 90/(90+50) => 9/14
Jane to Thomas to Jerryd => [1/3 + (2/3 * 9/19)] * (9/14)
Jane to Jerryd:
= Jane to Lisa to Jerryd + Jane to Thomas to Jerryd
= 2/3 * (10/19) + [1/3 + (2/3 * 9/19)] * (9/14)
这里有点是psedocode:
def get_favors(graph,label="jane",starting_favor=1):
start = graph.findNode(label)
queue = [(start,starting_favor)]
favors = {}
seen = set()
while queue:
node,curr_favor = queue.popleft()
# get total weight (out edges) from this node
total_favor = 0
for (edgeW,outNode) in node.out_edges:
total_favor = total_favor + edgeW
for (edgeW,outNode) in node.out_edges:
# if there are no favors for this node
# take current favor and provide proportional favor
if outNode not in favors:
favors[outNode] = curr_favor * (edgeW / total_favor)
# it already has some favor,so we add to it
# we add proportional favor
else:
favors[outNode] += curr_favor * (edgeW / total_favor)
# if we have seen this edge,and node ignore
# otherwise,transverse
if (edgeW,outNode) not in seen:
seen.add((edgeW,outNode))
queue.append((outNode,favors[outNode]))
# sort favor by value and return top X
return favors
解决方法
这是一个Gremlin查询,我相信可以正确应用您的公式。我将首先粘贴完整的最终查询,然后对所涉及的步骤说几句话。
gremlin> g.withSack(1).V().
......1> has('name','jane').
......2> repeat(outE().
......3> sack(mult).
......4> by(project('w','f').
......5> by('weight').
......6> by(outV().outE().values('weight').sum()).
......7> math('w / f')).
......8> inV().
......9> simplePath()).
.....10> until(has('name','jerryd')).
.....11> sack().
.....12> sum()
==>0.768170426065163
查询从Jane开始,并一直遍历直到检查到Jerry D的所有路径。沿途为每个遍历者保持sack
,其中包含每个关系的计算权重值相乘在一起。第6行的计算找到了所有可能来自先前顶点的边缘权重值,第7行的math
步骤用于将当前边缘的权重除以该总和。最后,每个计算的结果都在第12行中相加。如果删除最后的sum
步骤,则可以看到中间结果。
gremlin> g.withSack(1).V().
......1> has('name','jerryd')).
.....11> sack()
==>0.2142857142857143
==>0.3508771929824561
==>0.2030075187969925
要查看已执行path
步骤的路线,可以将其添加到查询中。
gremlin> g.withSack(1).V().
......1> has('name','jerryd')).
.....11> local(
.....12> union(
.....13> path().
.....14> by('name').
.....15> by('weight'),.....16> sack()).fold())
==>[[jane,10,thomas,90,jerryd],0.2142857142857143]
==>[[jane,20,lisa,100,0.3508771929824561]
==>[[jane,0.2030075187969925]
这种方法还考虑了根据您的公式添加任何直接连接的方式,因为我们可以看到我们是否使用Thomas作为目标。
gremlin> g.withSack(1).V().
......1> has('name','thomas')).
.....11> local(
.....12> union(
.....13> path().
.....14> by('name').
.....15> by('weight'),.....16> sack()).fold())
==>[[jane,thomas],0.3333333333333333]
==>[[jane,0.3157894736842105]
这些多余的步骤不是必需的,但是在调试此类查询时,包含path
很有用。另外,这不是必需的,但可能只是出于一般兴趣,我将补充一点,您也可以从此处获得最终答案,但是我所包含的第一个查询就是您真正需要的。
g.withSack(1).V().
has('name','jane').
repeat(outE().
sack(mult).
by(project('w','f').
by('weight').
by(outV().outE().values('weight').sum()).
math('w / f')).
inV().
simplePath()).
until(has('name','thomas')).
local(
union(
path().
by('name').
by('weight'),sack()).fold().tail(local)).
sum()
==>0.6491228070175439
如果其中任何一个不清楚或我误解了公式,请告诉我。
编辑添加
要找到Jane可以联系到的所有人的结果,我必须对查询进行一些修改。最后的unfold
只是为了使结果更易于阅读。
gremlin> g.withSack(1).V().
......1> has('name','f').
......5> by('weight').
......6> by(outV().outE().values('weight').sum()).
......7> math('w / f')).
......8> inV().
......9> simplePath()).
.....10> emit().
.....11> local(
.....12> union(
.....13> path().
.....14> by('name').
.....15> by('weight').unfold(),.....16> sack()).fold()).
.....17> group().
.....18> by(tail(local,2).limit(local,1)).
.....19> by(tail(local).sum()).
.....20> unfold()
==>jerryd=0.768170426065163
==>wyd=0.23182957393483708
==>lisa=0.6666666666666666
==>thomas=0.6491228070175439
第17行的最后group
步骤使用path
结果来计算找到的每个唯一名称的总偏好。要查看路径,可以在删除group
步骤的情况下运行查询。
gremlin> g.withSack(1).V().
......1> has('name',.....16> sack()).fold())
==>[jane,0.3333333333333333]
==>[jane,0.6666666666666666]
==>[jane,50,wyd,0.11904761904761904]
==>[jane,jerryd,0.2142857142857143]
==>[jane,0.3157894736842105]
==>[jane,0.3508771929824561]
==>[jane,0.11278195488721804]
==>[jane,0.2030075187969925]
,
此answer非常优雅,最适合与Neptune和Python有关的环境。如果其他人遇到这个问题,我提供第二个参考。从看到这个问题的那一刻起,我只能将它想象为以GraphComputer
的OLAP方式VertexProgram来解决。结果,我很难以任何其他方式考虑它。当然,使用VertexProgram
需要Java之类的JVM语言,并且不能直接与Neptune一起使用。我想我最接近的解决方法是使用Java,从Neptune获取一个subgraph()
,然后在TinkerGraph中本地运行自定义的VertexProgram
,这会非常快。
更普遍的是,在没有Python / Neptune要求的情况下,根据图形的性质和需要遍历的数据量,将算法转换为VertexProgram
并不是一个不错的方法。由于没有太多关于此主题的内容,我想在此提供它的代码核心。这是它的胆量:
@Override
public void execute(final Vertex vertex,final Messenger<Double> messenger,final Memory memory) {
// on the first pass calculate the "total favor" for all vertices
// and pass the calculated current favor forward along incident edges
// only for the "start vertex"
if (memory.isInitialIteration()) {
copyHaltedTraversersFromMemory(vertex);
final boolean startVertex = vertex.value("name").equals(nameOfStartVertrex);
final double initialFavor = startVertex ? 1d : 0d;
vertex.property(VertexProperty.Cardinality.single,FAVOR,initialFavor);
vertex.property(VertexProperty.Cardinality.single,TOTAL_FAVOR,IteratorUtils.stream(vertex.edges(Direction.OUT)).mapToDouble(e -> e.value("weight")).sum());
if (startVertex) {
final Iterator<Edge> incidents = vertex.edges(Direction.OUT);
memory.add(VOTE_TO_HALT,!incidents.hasNext());
while (incidents.hasNext()) {
final Edge incident = incidents.next();
messenger.sendMessage(MessageScope.Global.of(incident.inVertex()),(double) incident.value("weight") / (double) vertex.value(TOTAL_FAVOR));
}
}
} else {
// on future passes,sum all the incoming "favor" and add it to
// the "favor" property of each vertex. then once again pass the
// current favor to incident edges. this will keep happening
// until the message passing stops.
final Iterator<Double> messages = messenger.receiveMessages();
final boolean hasMessages = messages.hasNext();
if (hasMessages) {
double adjacentFavor = IteratorUtils.reduce(messages,0.0d,Double::sum);
vertex.property(VertexProperty.Cardinality.single,(double) vertex.value(FAVOR) + adjacentFavor);
final Iterator<Edge> incidents = vertex.edges(Direction.OUT);
memory.add(VOTE_TO_HALT,adjacentFavor * ((double) incident.value("weight") / (double) vertex.value(TOTAL_FAVOR)));
}
}
}
}
然后将以上代码执行为:
ComputerResult result = graph.compute().program(FavorVertexProgram.build().name("jane").create()).submit().get();
GraphTraversalSource rg = result.graph().traversal();
Traversal elements = rg.V().elementMap();
以及“元素”遍历的结果:
{id=0,label=person,^favor=1.0,name=jane,^totalFavor=30.0}
{id=2,^favor=0.6491228070175439,name=thomas,^totalFavor=140.0}
{id=4,^favor=0.6666666666666666,name=lisa,^totalFavor=190.0}
{id=6,^favor=0.23182957393483708,name=wyd,^totalFavor=0.0}
{id=8,^favor=0.768170426065163,name=jerryd,^totalFavor=0.0}