问题描述
我是Autoencoder的新手。我建立了一个简单的卷积自动编码器,如下所示:
# ENCODER
input_img = Input(shape=(64,64,1))
encode1 = Conv2D(32,(3,3),activation=tf.nn.leaky_relu,padding='same')(input_img)
encode2 = MaxPooling2D((2,2),padding='same')(encode1)
l = Flatten()(encode2)
l = Dense(100,activation='linear')(l)
# DECODER
d = Dense(1024,activation='linear')(l)
d = Reshape((32,32,1))(d)
decode3 = Conv2D(64,padding='same')(d)
decode4 = UpSampling2D((2,2))(decode3)
model = models.Model(input_img,decode4)
model.compile(optimizer='adam',loss='mse')
# Train it by providing training images
model.fit(x,y,epochs=20,batch_size=16)
现在,在训练此模型之后,我想从瓶颈层(即密集层)获取输出。这意味着,如果我将形状数组(1000,64,64)扔给模型,我想要压缩形状数组(1000,100)。
model = Model(inputs=[x],outputs=[l])
错误:
ValueError: Input tensors to a Functional must come from `tf.keras.Input`.
我也尝试了其他方法,但是那也不起作用。有人可以告诉我训练模型后如何找回压缩数组。
解决方法
您需要为encoder
创建单独的模型。训练了整个系统encoder-decoder
之后,您只能使用encoder
进行预测。代码示例:
# ENCODER
input_img = layers.Input(shape=(64,64,1))
encode1 = layers.Conv2D(32,(3,3),activation=tf.nn.leaky_relu,padding='same')(input_img)
encode2 = layers.MaxPooling2D((2,2),padding='same')(encode1)
l = layers.Flatten()(encode2)
encoder_output = layers.Dense(100,activation='linear')(l)
# DECODER
d = layers.Dense(1024,activation='linear')(encoder_output)
d = layers.Reshape((32,32,1))(d)
decode3 = layers.Conv2D(64,padding='same')(d)
decode4 = layers.UpSampling2D((2,2))(decode3)
model_encoder = Model(input_img,encoder_output)
model = Model(input_img,decode4)
model.fit(X,y,epochs=20,batch_size=16)
model_encoder.predict(X)
应该为每个图像返回一个向量。