检测两条曲线的交点的上游和下游点

问题描述

我有两条曲线,定义为

X1=[9,10.5,11,12,10,8,7,7]
Y1=[-5,-3.5,-2.5,-0.7,1,3,4,5,5]
X2=[5,9,9.5,12]
Y2=[-2,-0.5,-3]

它们彼此相交 https://swagger.io/docs/specification/describing-parameters/#query-parameters

通过使用我正在使用的系统代码编写的函数,我可以得到交点的坐标。

loop1=Loop([9,7],[-5,5])
loop2=Loop([5,12],[-2,-3])
x_int,y_int = get_intersect(loop1,loop2)
Intersection = [[],[]]
Intersection.append(x_int)
Intersection.append(y_int)

对于两条曲线,我需要找到由(x_int,y_int)标识的交点的上游和下游点。

我尝试过的事情是这样的:

for x_val,y_val,x,y in zip(Intersection[0],Intersection[1],loop1[0],loop1[1]):
    if  abs(x_val - x) < 0.5 and abs(y_val - y) < 0.5:
        print(x_val,y)

问题是结果受我决定的增量(在这种情况下为0.5)的影响很大,这给我带来错误的结果,尤其是当我使用更多的十进制数字时(实际上就是我的情况)。

如何使循环更鲁棒,并实际上找到交叉点上下游的所有点?

非常感谢您的帮助

解决方法

TL; TR:在折线段上循环并测试if the intersection is betwwen the segment end points

一种更可靠的方法(比OP中的“ delta”要好)是找到折线的一段,该段包含相交点(通常为给定点)。 IMO应该是get_intersect函数的一部分,但是如果您无法访问它,则必须自己搜索该部分。

由于舍入误差,给定点并不完全位于线段上,因此您仍然有一些tol参数,但是结果对其值(非常低)应该“几乎不敏感”。 / p>

该方法使用简单的几何,即点积和叉积及其几何含义:

X1=[9,10.5,11,12,10,8,7,7]
Y1=[-5,-3.5,-2.5,-0.7,1,3,4,5,5]
X2=[5,9,9.5,12]
Y2=[-2,-0.5,-3]

x_int,y_int = 11.439024390243903,-1.7097560975609765

def splitLine(X,Y,x,y,tol=1e-12):
    """Function
    X,Y ... coordinates of line points
    x,y ... point on a polyline
    tol ... tolerance of the normalized distance from the segment
    returns ... (X_upstream,Y_upstream),(X_downstream,Y_downstream)
    """
    found = False
    for i in range(len(X)-1): # loop over segments
        # segment end points
        x1,x2 = X[i],X[i+1]
        y1,y2 = Y[i],Y[i+1]
        # segment "vector"
        dx = x2 - x1
        dy = y2 - y1
        # segment length square
        d2 = dx*dx + dy*dy
        # (int,1st end point) vector
        ix = x - x1
        iy = y - y1
        # normalized dot product
        dot = (dx*ix + dy*iy) / d2
        if dot < 0 or dot > 1: # point projection is outside segment
            continue
        # normalized cross product
        cross = (dx*iy - dy*ix) / d2
        if abs(cross) > tol: # point is perpendicularly too far away
            continue
        # here,we have found the segment containing the point!
        found = True
        break
    if not found:
        raise RuntimeError("intersection not found on segments") # or return None,according to needs
    i += 1 # the "splitting point" has one higher index than the segment
    return (X[:i],Y[:i]),(X[i:],Y[i:])

# plot
import matplotlib.pyplot as plt
plt.plot(X1,Y1,'y',linewidth=8)
plt.plot(X2,Y2,linewidth=8)
plt.plot([x_int],[y_int],"r*")
(X1u,Y1u),(X1d,Y1d) = splitLine(X1,x_int,y_int)
(X2u,Y2u),(X2d,Y2d) = splitLine(X2,y_int)
plt.plot(X1u,Y1u,'g',linewidth=3)
plt.plot(X1d,Y1d,'b',linewidth=3)
plt.plot(X2u,Y2u,linewidth=3)
plt.plot(X2d,Y2d,linewidth=3)
plt.show()

结果:

enter image description here