问题描述
我正在尝试按照本教程进行情感分析,并且我很确定到目前为止,我的代码是完全相同的。但是,我的BOW值出现了严重的差异。
这是到目前为止的代码。
import nltk
import pandas as pd
import string
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectKBest,chi2
def openFile(path):
#param path: path/to/file.ext (str)
#Returns contents of file (str)
with open(path) as file:
data = file.read()
return data
imdb_data = openFile('C:/Users/Flengo/Desktop/sentiment/data/imdb_labelled.txt')
amzn_data = openFile('C:/Users/Flengo/Desktop/sentiment/data/amazon_cells_labelled.txt')
yelp_data = openFile('C:/Users/Flengo/Desktop/sentiment/data/yelp_labelled.txt')
datasets = [imdb_data,amzn_data,yelp_data]
combined_dataset = []
# separate samples from each other
for dataset in datasets:
combined_dataset.extend(dataset.split('\n'))
# separate each label from each sample
dataset = [sample.split('\t') for sample in combined_dataset]
df = pd.DataFrame(data=dataset,columns=['Reviews','Labels'])
df = df[df["Labels"].notnull()]
df = df.sample(frac=1)
labels = df['Labels']
vectorizer = TfidfVectorizer(min_df=15)
bow = vectorizer.fit_transform(df['Reviews'])
len(vectorizer.get_feature_names())
selected_features = SelectKBest(chi2,k=200).fit(bow,labels).get_support(indices=True)
vectorizer = TfidfVectorizer(min_df=15,vocabulary=selected_features)
bow = vectorizer.fit_transform(df['Reviews'])
bow
这是我的结果。
我一直在试图找出可能的问题,但是我什么都没做。
解决方法
问题在于您正在提供索引,请尝试提供一个真正的vocab。
尝试一下:
selected_features = SelectKBest(chi2,k=200).fit(bow,labels).get_support(indices=True)
vocabulary = np.array(vectorizer.get_feature_names())[selected_features]
vectorizer = TfidfVectorizer(min_df=15,vocabulary=vocabulary) # you need to supply a real vocab here
bow = vectorizer.fit_transform(df['Reviews'])
bow
<3000x200 sparse matrix of type '<class 'numpy.float64'>'
with 12916 stored elements in Compressed Sparse Row format>