问题描述
我试图通过使用管道并调整其中的参数来应用RandomForestClassifier()。这是使用的数据集:https://www.kaggle.com/gbonesso/enem-2016
这是代码
from sklearn.ensemble import RandomForestClassifier
imputer = SimpleImputer(strategy="median")
scaler = StandardScaler()
rf = RandomForestClassifier()
features = [
"NU_IDADE","TP_ESTADO_CIVIL","NU_NOTA_CN","NU_NOTA_CH","NU_NOTA_LC","NU_NOTA_MT","NU_NOTA_COMP1","NU_NOTA_COMP2","NU_NOTA_COMP3","NU_NOTA_COMP4","NU_NOTA_COMP5","NU_NOTA_REDACAO",]
X = enem[features]
y = enem[["IN_TREINEIRO"]]
X_train,X_test,y_train,y_test = train_test_split(
X,y,train_size=0.8,random_state=42
)
pipeline = make_pipeline(imputer,scaler,rf)
pipe_params = {
"randomforestregressor__n_estimators": [100,500,1000],"randomforestregressor__max_depth": [1,5,10,25],"randomforestregressor__max_features": [*np.arange(0.1,1.1,0.1)],}
gridsearch = gridsearchcv(
pipeline,param_grid=pipe_params,cv=3,n_jobs=-1,verbose=1000
)
gridsearch.fit(X_train,y_train)
它似乎适用于一些参数,但随后出现此错误消息:
ValueError: Invalid parameter randomforestregressor for estimator Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='median')),('standardscaler',StandardScaler()),('randomforestclassifier',RandomForestClassifier())]). Check the list of available parameters with `estimator.get_params().keys()`.
另外,还有一个问题是我似乎无法获得简历结果。我尝试运行以下代码:
results = pd.DataFrame(gridsearch.cv_results_)
results.sort_values("rank_test_score").head()
score = pipeline.score(X_test,y_test)
score
但是我得到了这个错误:
AttributeError: 'gridsearchcv' object has no attribute 'cv_results_'
解决方法
您的问题可能是这本字典:
pipe_params = {
"randomforestregressor__n_estimators": [100,500,1000],"randomforestregressor__max_depth": [1,5,10,25],"randomforestregressor__max_features": [*np.arange(0.1,1.1,0.1)],}
错误提示,您的管道没有randomforestregressor
参数。由于您使用的是RandomForestClassifier,因此应该为:
pipe_params = {
"randomforestclassifier__n_estimators": [100,"randomforestclassifier__max_depth": [1,"randomforestclassifier__max_features": [*np.arange(0.1,}
如果您在错误消息中运行建议,您将看到管道的可用选项(pipeline.get_params().keys()
)。
尼克的答案绝对正确,并且确实可以解决您的问题。在您的情况下,可以实例化管道,而避免使用make_pipeline
类,而使用Pipeline
类。我相信这有点可读性和简洁性:
pipe = Pipeline([
("scaler",StandardScaler()),("clf",RandomForestClassifier())
])
然后访问带有分类器名称前缀的模型参数:
param_grid = {
"clf__n_estimators": [100,"clf__max_depth": [1,"clf__max_features": [*np.arange(0.1,}
下面是基于虹膜数据集的完整示例:
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn import datasets
import numpy as np
# Data preparation
iris = datasets.load_iris()
x = iris.data[:,:2]
y = iris.target
x_train,x_test,y_train,y_test = train_test_split(
x,y,test_size=0.33,random_state=42
)
# Build a pipeline object
pipe = Pipeline([
("scaler",RandomForestClassifier())
])
# Declare a hyperparameter grid
param_grid = {
"clf__n_estimators": [100,}
# Perform grid search,fit it,and print score
gs = GridSearchCV(pipe,param_grid=param_grid,cv=3,n_jobs=-1,verbose=1000)
gs.fit(x_train,y_train)
print(gs.score())