加快包装在tf.function

问题描述

我想在阅读TfRecords的同时进行一些扩充,我一直在使用tf.numpy_function,然后将其包装到tf.function,但是我的训练非常慢。

我如何加快cupy的过程?

例如,我使用affine_transform form scipy,但我发现here在cupy中也有类似的功能

这是我在tensorflow中读取TfRecords时在map函数中使用的函数

@tf.function
def rotation3D(volume,label):

    def scipy_rotate(volume):
        # tf.config.optimizer.set_experimental_options('loop_optimization')
        alpha,beta,gamma = np.random.randint(0,31,size=3)/180*np.pi
        Rx = np.array([[1,0],[0,np.cos(alpha),-np.sin(alpha)],np.sin(alpha),np.cos(alpha)]])

        Ry = np.array([[np.cos(beta),np.sin(beta)],1,[-np.sin(beta),np.cos(beta)]])

        Rz = np.array([[np.cos(gamma),-np.sin(gamma),[np.sin(gamma),np.cos(gamma),1]])

        R = np.dot(np.dot(Rx,Ry),Rz)

        volume_rot = np.empty_like(volume)
        for channel in tf.range(volume.shape[-1]):
            volume_rot[:,:,channel] = affine_transform(volume[:,channel],R,offset=0,order=3,mode='nearest')

        return volume_rot

    augmented_volume = tf.numpy_function(scipy_rotate,[volume],tf.float32)

    return augmented_volume,label

这是我用来读取TfRecords和进行扩充的功能

def input_fn(filenames,subset,batch_size,buffer_size=512,data_augmentation=True):
    # Args:
    # filenames:   Filenames for the TFRecords files.
    # subset:      Subset to make either train,valid,test.
    # batch_size:  Return batches of this size.
    # buffer_size: Read buffers of this size. The random shuffling
    #              is done on the buffer,so it must be big enough.

    # Create a TensorFlow Dataset-object which has functionality
    # for reading and shuffling data from TFRecords files.
    AUTO = tf.data.experimental.AUTOTUNE

    dataset = tf.data.TFRecordDataset(filenames=filenames)

    # Parse the serialized data in the TFRecords files.
    # This returns TensorFlow tensors for the image and labels.

    dataset = dataset.map(parse_example,num_parallel_calls = AUTO)

    # make the training dataset to iterate forever
    if subset == 'train' or subset == 'valid':
        dataset = dataset.repeat()

    # shuffle the training dataset
    if subset != 'test':
        dataset = dataset.shuffle(buffer_size=buffer_size)


    if (subset != 'test' and data_augmentation == True):
        # dataset = dataset.map(elastic3D,num_parallel_calls = AUTO)
        # dataset = dataset.map(flip3D,num_parallel_calls = AUTO)
        dataset = dataset.map(rotation3D,num_parallel_calls = AUTO)
        # dataset = dataset.map(blur3D,num_parallel_calls = AUTO)

    # set bach_size
    dataset = dataset.batch(batch_size=batch_size)
    dataset = dataset.prefetch(2)

    return dataset

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)